forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgemm_sm70.cu
526 lines (446 loc) · 18.4 KB
/
sgemm_sm70.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <cstdlib>
#include <cstdio>
#include <cassert>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <cute/tensor.hpp>
#include "cutlass/util/print_error.hpp"
#include "cutlass/util/GPU_Clock.hpp"
#include "cutlass/util/helper_cuda.hpp"
template <class ProblemShape, class CtaTiler,
class TA, class AStride, class ASmemLayout, class TiledCopyA,
class TB, class BStride, class BSmemLayout, class TiledCopyB,
class TC, class CStride, class CSmemLayout, class TiledMma,
class Alpha, class Beta>
__global__ static
__launch_bounds__(decltype(size(TiledMma{}))::value)
void
gemm_device(ProblemShape shape_MNK, CtaTiler cta_tiler,
TA const* A, AStride dA, ASmemLayout sA_layout, TiledCopyA copy_a,
TB const* B, BStride dB, BSmemLayout sB_layout, TiledCopyB copy_b,
TC * C, CStride dC, CSmemLayout , TiledMma mma,
Alpha alpha, Beta beta)
{
using namespace cute;
// Preconditions
CUTE_STATIC_ASSERT_V(rank(shape_MNK) == Int<3>{}); // (M, N, K)
CUTE_STATIC_ASSERT_V(rank(cta_tiler) == Int<3>{}); // (BLK_M, BLK_N, BLK_K)
CUTE_STATIC_ASSERT_V(size(copy_a) == size(mma)); // NumThreads
CUTE_STATIC_ASSERT_V(size(copy_b) == size(mma)); // NumThreads
static_assert(is_static<ASmemLayout>::value);
static_assert(is_static<BSmemLayout>::value);
static_assert(is_static<CSmemLayout>::value);
CUTE_STATIC_ASSERT_V(size<0>(ASmemLayout{}) == size<0>(cta_tiler)); // BLK_M
CUTE_STATIC_ASSERT_V(size<0>(CSmemLayout{}) == size<0>(cta_tiler)); // BLK_M
CUTE_STATIC_ASSERT_V(size<0>(BSmemLayout{}) == size<1>(cta_tiler)); // BLK_N
CUTE_STATIC_ASSERT_V(size<1>(CSmemLayout{}) == size<1>(cta_tiler)); // BLK_N
CUTE_STATIC_ASSERT_V(size<1>(ASmemLayout{}) == size<2>(cta_tiler)); // BLK_K
CUTE_STATIC_ASSERT_V(size<1>(BSmemLayout{}) == size<2>(cta_tiler)); // BLK_K
CUTE_STATIC_ASSERT_V(congruent(select<0,2>(shape_MNK), dA)); // dA strides for shape MK
CUTE_STATIC_ASSERT_V(congruent(select<1,2>(shape_MNK), dB)); // dB strides for shape NK
CUTE_STATIC_ASSERT_V(congruent(select<0,1>(shape_MNK), dC)); // dC strides for shape MN
//
// Full and Tiled Tensors
//
// Represent the full tensors
Tensor mA = make_tensor(make_gmem_ptr(A), select<0,2>(shape_MNK), dA); // (M,K)
Tensor mB = make_tensor(make_gmem_ptr(B), select<1,2>(shape_MNK), dB); // (N,K)
Tensor mC = make_tensor(make_gmem_ptr(C), select<0,1>(shape_MNK), dC); // (M,N)
// Get the appropriate blocks for this thread block
auto cta_coord = make_coord(blockIdx.x, blockIdx.y, _); // (m,n,k)
Tensor gA = local_tile(mA, cta_tiler, cta_coord, Step<_1, X,_1>{}); // (BLK_M,BLK_K,k)
Tensor gB = local_tile(mB, cta_tiler, cta_coord, Step< X,_1,_1>{}); // (BLK_N,BLK_K,k)
Tensor gC = local_tile(mC, cta_tiler, cta_coord, Step<_1,_1, X>{}); // (BLK_M,BLK_N)
// Shared memory buffers
__shared__ TA smemA[cosize_v<ASmemLayout>];
__shared__ TB smemB[cosize_v<BSmemLayout>];
Tensor sA = make_tensor(make_smem_ptr(smemA), sA_layout); // (BLK_M,BLK_K)
Tensor sB = make_tensor(make_smem_ptr(smemB), sB_layout); // (BLK_N,BLK_K)
//
// Partition the copying of A and B tiles across the threads
//
// TUTORIAL: Example of partitioning via a TiledCopy
ThrCopy thr_copy_a = copy_a.get_slice(threadIdx.x);
Tensor tAgA = thr_copy_a.partition_S(gA); // (CPY,CPY_M,CPY_K,k)
Tensor tAsA = thr_copy_a.partition_D(sA); // (CPY,CPY_M,CPY_K)
Tensor tArA = make_fragment_like(tAsA); // (CPY,CPY_M,CPY_K)
ThrCopy thr_copy_b = copy_b.get_slice(threadIdx.x);
Tensor tBgB = thr_copy_b.partition_S(gB); // (CPY,CPY_N,CPY_K,k)
Tensor tBsB = thr_copy_b.partition_D(sB); // (CPY,CPY_N,CPY_K)
Tensor tBrB = make_fragment_like(tBsB); // (CPY,CPY_N,CPY_K)
CUTE_STATIC_ASSERT_V(size<1>(tAgA) == size<1>(tAsA)); // CPY_M
CUTE_STATIC_ASSERT_V(size<1>(tAgA) == size<1>(tArA)); // CPY_M
CUTE_STATIC_ASSERT_V(size<2>(tAgA) == size<2>(tAsA)); // CPY_K
CUTE_STATIC_ASSERT_V(size<2>(tAgA) == size<2>(tArA)); // CPY_K
CUTE_STATIC_ASSERT_V(size<1>(tBgB) == size<1>(tBsB)); // CPY_N
CUTE_STATIC_ASSERT_V(size<1>(tBgB) == size<1>(tBrB)); // CPY_N
CUTE_STATIC_ASSERT_V(size<2>(tBgB) == size<2>(tBsB)); // CPY_K
CUTE_STATIC_ASSERT_V(size<2>(tBgB) == size<2>(tBrB)); // CPY_K
// Copy gmem to rmem for k_tile=0
copy(copy_a, tAgA(_,_,_,0), tArA);
copy(copy_b, tBgB(_,_,_,0), tBrB);
//
// Define A/B partitioning and C accumulators
//
// TUTORIAL: Example of partitioning via a TiledMMA
ThrMMA thr_mma = mma.get_slice(threadIdx.x);
Tensor tCsA = thr_mma.partition_A(sA); // (MMA,MMA_M,MMA_K)
Tensor tCsB = thr_mma.partition_B(sB); // (MMA,MMA_N,MMA_K)
Tensor tCgC = thr_mma.partition_C(gC); // (MMA,MMA_M,MMA_N)
// Allocate registers for pipelining
Tensor tCrA = thr_mma.make_fragment_A(tCsA); // (MMA,MMA_M,MMA_K)
Tensor tCrB = thr_mma.make_fragment_B(tCsB); // (MMA,MMA_N,MMA_K)
// Allocate the accumulators -- same size as the projected data
Tensor tCrC = thr_mma.make_fragment_C(tCgC); // (MMA,MMA_M,MMA_N)
CUTE_STATIC_ASSERT_V( shape(tCrA) == shape(tCsA)); // (MMA,MMA_M,MMA_K)
CUTE_STATIC_ASSERT_V( shape(tCrB) == shape(tCsB)); // (MMA,MMA_N,MMA_K)
CUTE_STATIC_ASSERT_V( shape(tCrC) == shape(tCgC)); // (MMA,MMA_M,MMA_N)
CUTE_STATIC_ASSERT_V(size<1>(tCgC) == size<1>(tCsA)); // MMA_M
CUTE_STATIC_ASSERT_V(size<2>(tCgC) == size<1>(tCsB)); // MMA_N
CUTE_STATIC_ASSERT_V(size<2>(tCsA) == size<2>(tCsB)); // MMA_K
// Clear the accumulators
clear(tCrC);
#if 0
if(thread0()) {
print(" mA : "); print( mA); print("\n");
print(" gA : "); print( gA); print("\n");
print(" sA : "); print( sA); print("\n");
print("tAgA : "); print(tAgA); print("\n");
print("tAsA : "); print(tAsA); print("\n");
print("tArA : "); print(tArA); print("\n");
}
#endif
#if 0
if(thread0()) {
print(" mB : "); print( mB); print("\n");
print(" gB : "); print( gB); print("\n");
print(" sB : "); print( sB); print("\n");
print("tBgB : "); print(tBgB); print("\n");
print("tBsB : "); print(tBsB); print("\n");
print("tArA : "); print(tArA); print("\n");
}
#endif
#if 0
if(thread0()) {
print(" mC : "); print( mC); print("\n");
print(" gC : "); print( gC); print("\n");
print("tCsA : "); print(tCsA); print("\n");
print("tCsB : "); print(tCsB); print("\n");
print("tCgC : "); print(tCgC); print("\n");
print("tCrC : "); print(tCrC); print("\n");
}
#endif
#if 1
// Copy rmem to smem
copy(tArA, tAsA);
copy(tBrB, tBsB);
__syncthreads();
//
// PIPELINED MAIN LOOP
// TUTORIAL: Example of a gemm loop that pipelines shared memory AND register memory
// Data is read from global to registers, then to shared via the tA|tB partitions
// Data is then copied from shared to registers in multiple waves via the tC partitions
// and gemm(.) operates on the current register wave
//
// Load A, B shmem->regs for k_block=0
copy(tCsA(_,_,0), tCrA(_,_,0));
copy(tCsB(_,_,0), tCrB(_,_,0));
auto K_TILE_MAX = size<3>(tAgA);
auto K_BLOCK_MAX = size<2>(tCrA);
CUTE_NO_UNROLL
for (int k_tile = 0; k_tile < K_TILE_MAX; ++k_tile)
{
// Pipeline the k-mode of the block registers
CUTE_UNROLL
for (int k_block = 0; k_block < K_BLOCK_MAX; ++k_block)
{
if (k_block == K_BLOCK_MAX - 1)
{
// Copy rmem to smem
__syncthreads();
copy(tArA, tAsA);
copy(tBrB, tBsB);
__syncthreads();
}
// Copy smem to rmem for k_block+1
int k_block_next = (k_block + 1) % K_BLOCK_MAX;
copy(tCsA(_,_,k_block_next), tCrA(_,_,k_block_next));
copy(tCsB(_,_,k_block_next), tCrB(_,_,k_block_next));
if (k_block == 0)
{
// Copy gmem to rmem for k_tile+1
int k_tile_next = (k_tile + 1 < K_TILE_MAX) ? k_tile + 1 : k_tile;
copy(copy_a, tAgA(_,_,_,k_tile_next), tArA);
copy(copy_b, tBgB(_,_,_,k_tile_next), tBrB);
}
// Thread-level register gemm for k_block
gemm(mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
} // k_block
} // k_tile
#endif
//
// Epilogue
//
axpby(alpha, tCrC, beta, tCgC);
}
// Setup params for a NT GEMM
template <class TA, class TB, class TC,
class Alpha, class Beta>
void
gemm_nt(int m, int n, int k,
Alpha alpha,
TA const* A, int ldA,
TB const* B, int ldB,
Beta beta,
TC * C, int ldC,
cudaStream_t stream = 0)
{
using namespace cute;
// Define shapes (dynamic)
auto M = int(m);
auto N = int(n);
auto K = int(k);
auto prob_shape = make_shape(M, N, K); // (M, N, K)
// Define NT strides (mixed)
auto dA = make_stride(Int<1>{}, ldA); // (dM, dK)
auto dB = make_stride(Int<1>{}, ldB); // (dN, dK)
auto dC = make_stride(Int<1>{}, ldC); // (dM, dN)
// Define CTA tile sizes (static)
auto bM = Int<128>{};
auto bN = Int<128>{};
auto bK = Int< 8>{};
auto cta_tiler = make_shape(bM, bN, bK); // (BLK_M, BLK_N, BLK_K)
// Define the smem layouts (static)
auto sA = make_layout(make_shape(bM, bK)); // (m,k) -> smem_idx; m-major
auto sB = make_layout(make_shape(bN, bK)); // (n,k) -> smem_idx; n-major
auto sC = make_layout(make_shape(bM, bN)); // (m,n) -> smem_idx; m-major
// Define the thread layouts (static)
TiledCopy copyA = make_tiled_copy(Copy_Atom<UniversalCopy<uint128_t>, TA>{},
Layout<Shape<_32,_8>>{}, // Thr layout 32x8 m-major
Layout<Shape< _4,_1>>{}); // Val layout 4x1 m-major
TiledCopy copyB = make_tiled_copy(Copy_Atom<UniversalCopy<uint128_t>, TB>{},
Layout<Shape<_32,_8>>{}, // Thr layout 32x8 n-major
Layout<Shape< _4,_1>>{}); // Val layout 4x1 n-major
TiledMMA mmaC = make_tiled_mma(UniversalFMA<TC,TA,TB>{},
Layout<Shape<_16,_16,_1>>{}); // 16x16x1 TiledMMA
#if 0
print(copyA);
print(copyB);
print(mmaC);
#endif
#if 0
print_latex(copyA);
print_latex(copyB);
print_latex(mmaC);
#endif
dim3 dimBlock(size(mmaC));
dim3 dimGrid(size(ceil_div(M, bM)),
size(ceil_div(N, bN)));
gemm_device<<<dimGrid, dimBlock, 0, stream>>>
(prob_shape, cta_tiler,
A, dA, sA, copyA,
B, dB, sB, copyB,
C, dC, sC, mmaC,
alpha, beta);
}
// Setup params for a TN GEMM
template <class TA, class TB, class TC,
class Alpha, class Beta>
void
gemm_tn(int m, int n, int k,
Alpha alpha,
TA const* A, int ldA,
TB const* B, int ldB,
Beta beta,
TC * C, int ldC,
cudaStream_t stream = 0)
{
using namespace cute;
// Define shapes (dynamic)
auto M = int(m);
auto N = int(n);
auto K = int(k);
auto prob_shape = make_shape(M, N, K); // (M, N, K)
// Define TN strides (mixed)
auto dA = make_stride(ldA, Int<1>{}); // (dM, dK)
auto dB = make_stride(ldB, Int<1>{}); // (dN, dK)
auto dC = make_stride(Int<1>{}, ldC); // (dM, dN)
// Define CTA tile sizes (static)
auto bM = Int<128>{};
auto bN = Int<128>{};
auto bK = Int< 8>{};
auto cta_tiler = make_shape(bM, bN, bK); // (BLK_M, BLK_N, BLK_K)
// Define the smem layouts (static)
auto sA = make_layout(make_shape ( bM, bK),
make_stride(Int<1>{}, bM+Int<1>{})); // (m,k) -> smem_idx; padded m-major
auto sB = make_layout(make_shape ( bN, bK),
make_stride(Int<1>{}, bN+Int<1>{})); // (n,k) -> smem_idx; padded n-major
auto sC = make_layout(make_shape(bM, bN)); // (m,n) -> smem_idx
// Define the thread layouts (static)
TiledCopy copyA = make_tiled_copy(Copy_Atom<UniversalCopy<TA>, TA>{},
Layout<Shape<_32,_8>,Stride<_8,_1>>{}, // Thr layout 32x8 k-major
Layout<Shape< _1,_1>>{}); // Val layout 1x1
TiledCopy copyB = make_tiled_copy(Copy_Atom<UniversalCopy<TB>, TB>{},
Layout<Shape<_32,_8>,Stride<_8,_1>>{}, // Thr layout 32x8 k-major
Layout<Shape< _1,_1>>{}); // Val layout 1x1
TiledMMA mmaC = make_tiled_mma(UniversalFMA<TC,TA,TB>{},
Layout<Shape<_16,_16,_1>>{}); // 16x16x1 TiledMMA
#if 0
print(copyA);
print(copyB);
print(mmaC);
#endif
#if 0
print_latex(copyA);
print_latex(copyB);
print_latex(mmaC);
#endif
dim3 dimBlock(size(mmaC));
dim3 dimGrid(size(ceil_div(M, bM)),
size(ceil_div(N, bN)));
gemm_device<<<dimGrid, dimBlock, 0, stream>>>
(prob_shape, cta_tiler,
A, dA, sA, copyA,
B, dB, sB, copyB,
C, dC, sC, mmaC,
alpha, beta);
}
template <class TA, class TB, class TC,
class Alpha, class Beta>
void
gemm(char transA, char transB, int m, int n, int k,
Alpha alpha,
TA const* A, int ldA,
TB const* B, int ldB,
Beta beta,
TC * C, int ldC,
cudaStream_t stream = 0)
{
if (transA == 'N' && transB == 'T') {
return gemm_nt(m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC, stream);
} else
if (transA == 'T' && transB == 'N') {
return gemm_tn(m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC, stream);
}
assert(false && "Not implemented");
}
int main(int argc, char** argv)
{
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (props.major < 7) {
std::cout << "This example requires an Volta GPU or newer (CC >= 70)" << std::endl;
// Return 0 so tests pass if run on unsupported architectures or CUDA Toolkits.
return 0;
}
int m = 5120;
if (argc >= 2)
sscanf(argv[1], "%d", &m);
int n = 5120;
if (argc >= 3)
sscanf(argv[2], "%d", &n);
int k = 4096;
if (argc >= 4)
sscanf(argv[3], "%d", &k);
char transA = 'N';
if (argc >= 5)
sscanf(argv[4], "%c", &transA);
char transB = 'T';
if (argc >= 6)
sscanf(argv[5], "%c", &transB);
using TA = float;
using TB = float;
using TC = float;
using TI = float;
TI alpha = 1.0;
TI beta = 0.0;
std::cout << "M = " << m << std::endl;
std::cout << "N = " << n << std::endl;
std::cout << "K = " << k << std::endl;
std::cout << "C = A^" << transA << " B^" << transB << std::endl;
thrust::host_vector<TA> h_A(m*k);
thrust::host_vector<TB> h_B(n*k);
thrust::host_vector<TC> h_C(m*n);
for (int j = 0; j < m*k; ++j) h_A[j] = static_cast<TA>( 2*(rand() / double(RAND_MAX)) - 1 );
for (int j = 0; j < n*k; ++j) h_B[j] = static_cast<TB>( 2*(rand() / double(RAND_MAX)) - 1 );
for (int j = 0; j < m*n; ++j) h_C[j] = static_cast<TC>(-1);
thrust::device_vector<TA> d_A = h_A;
thrust::device_vector<TB> d_B = h_B;
thrust::device_vector<TC> d_C = h_C;
double gflops = (2.0*m*n*k) * 1e-9;
const int timing_iterations = 100;
GPU_Clock timer;
int ldA = 0, ldB = 0, ldC = m;
if (transA == 'N') {
ldA = m;
} else if (transA == 'T') {
ldA = k;
} else {
assert(false);
}
if (transB == 'N') {
ldB = k;
} else if (transB == 'T') {
ldB = n;
} else {
assert(false);
}
// Run once
d_C = h_C;
gemm(transA, transB, m, n, k,
alpha,
d_A.data().get(), ldA,
d_B.data().get(), ldB,
beta,
d_C.data().get(), ldC);
CUTE_CHECK_LAST();
thrust::host_vector<TC> cute_result = d_C;
// Timing iterations
timer.start();
for (int i = 0; i < timing_iterations; ++i) {
gemm(transA, transB, m, n, k,
alpha,
d_A.data().get(), ldA,
d_B.data().get(), ldB,
beta,
d_C.data().get(), ldC);
}
double cute_time = timer.seconds() / timing_iterations;
CUTE_CHECK_LAST();
printf("CUTE_GEMM: [%6.1f]GFlop/s (%6.4f)ms\n", gflops / cute_time, cute_time*1000);
return 0;
}