forked from damitkwr/ESRNN-GPU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
91 lines (83 loc) · 2.63 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from math import sqrt
import torch
def get_config(interval):
config = {
'prod': True,
'device': ("cuda" if torch.cuda.is_available() else "cpu"),
'percentile': 50,
'training_percentile': 45,
'add_nl_layer': True,
'rnn_cell_type': 'LSTM',
'learning_rate': 1e-3,
'learning_rates': ((10, 1e-4)),
'num_of_train_epochs': 15,
'num_of_categories': 6, # in data provided
'batch_size': 1024,
'gradient_clipping': 20,
'c_state_penalty': 0,
'min_learning_rate': 0.0001,
'lr_ratio': sqrt(10),
'lr_tolerance_multip': 1.005,
'min_epochs_before_changing_lrate': 2,
'print_train_batch_every': 5,
'print_output_stats': 3,
'lr_anneal_rate': 0.5,
'lr_anneal_step': 5
}
if interval == 'Quarterly':
config.update({
'chop_val': 72,
'variable': "Quarterly",
'dilations': ((1, 2), (4, 8)),
'state_hsize': 40,
'seasonality': 4,
'input_size': 4,
'output_size': 8,
'level_variability_penalty': 80
})
elif interval == 'Monthly':
config.update({
# RUNTIME PARAMETERS
'chop_val': 72,
'variable': "Monthly",
'dilations': ((1, 3), (6, 12)),
'state_hsize': 50,
'seasonality': 12,
'input_size': 12,
'output_size': 18,
'level_variability_penalty': 50
})
elif interval == 'Daily':
config.update({
# RUNTIME PARAMETERS
'chop_val': 200,
'variable': "Daily",
'dilations': ((1, 7), (14, 28)),
'state_hsize': 50,
'seasonality': 7,
'input_size': 7,
'output_size': 14,
'level_variability_penalty': 50
})
elif interval == 'Yearly':
config.update({
# RUNTIME PARAMETERS
'chop_val': 25,
'variable': "Yearly",
'dilations': ((1, 2), (2, 6)),
'state_hsize': 30,
'seasonality': 1,
'input_size': 4,
'output_size': 6,
'level_variability_penalty': 0
})
else:
print("I don't have that config. :(")
config['input_size_i'] = config['input_size']
config['output_size_i'] = config['output_size']
config['tau'] = config['percentile'] / 100
config['training_tau'] = config['training_percentile'] / 100
if not config['prod']:
config['batch_size'] = 10
config['num_of_train_epochs'] = 15
return config