-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_incept.py
195 lines (148 loc) · 4.9 KB
/
train_incept.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import caffe
from caffe.proto import caffe_pb2
import plyvel
import numpy as np
import h5py
from keras import backend as K
from inception import Inception
import cv2
from random import shuffle
import matplotlib.pyplot as plt
# nohup python train.py &
# ps -ef | grep train.py
# tail -f nohup.out
# kill UID
resize = False
normalize = True
random_order = True
plot_loss = True
if K.image_dim_ordering() == 'tf':
dim = (299, 299, 3)
else:
dim = (3, 299, 299)
def train_incept(db, keys, avg, mean_std):
m = len(keys)
epochs = 20
# iterations = 140000
batch_size = 32
stream_size = batch_size * 100 # ~1K images loaded at a time
validation_size = batch_size * 10
loss = []
val_loss = []
model = Inception((210, 280, 3), 4096)
# input shape must be within [139, 299]
for j in range(epochs):
for i in range(0, m, stream_size):
X_batch, Y_batch = get_data(db, keys[i:(i + stream_size)], avg, mean_std)
X_train = X_batch[:-validation_size]
Y_train = Y_batch[:-validation_size]
X_test = X_batch[-validation_size:]
Y_test = Y_batch[-validation_size:]
# model.fit(X_batch, Y_batch, batch_size=batch_size, epochs=1, verbose=1)
hist = model.fit(X_train, Y_train,
batch_size=batch_size, epochs=1, verbose=1,
validation_data=(X_test, Y_test))
loss.extend(hist.history['loss'])
val_loss.extend(hist.history['val_loss'])
if plot_loss:
plt.plot(loss)
plt.plot(val_loss)
plt.legend(['loss', 'val_loss'])
plt.savefig('loss_incept.png', bbox_inches='tight')
return model
def get_data(db, keys, avg, mean_std):
n = len(keys)
if K.image_dim_ordering() == 'tf':
X_train = np.empty((n, 210, 280, 3))
else:
X_train = np.empty((n, 3, 210, 280))
Y_train = np.empty((n, 14))
for i, key in enumerate(keys):
datum = caffe_pb2.Datum.FromString(db.get(key))
img = caffe.io.datum_to_array(datum)
# img.shape = 3x210x280
if K.image_dim_ordering() == 'tf':
img = np.swapaxes(img, 0, 1)
img = np.swapaxes(img, 1, 2)
# if 'th', leave as is
img = img.astype('float32')
# img = img / 255.0
if resize:
img = cv2.resize(img, dim) # bilinear
img = np.subtract(img, avg)
X_train[i] = img
affordances = [j for j in datum.float_data]
affordances = np.array(affordances)
affordances = affordances.reshape(1, 14)
affordances = affordances.astype('float32')
if normalize: # z-score normalization
affordances = np.subtract(affordances, mean_std[0])
affordances = np.divide(affordances, mean_std[1])
Y_train[i] = affordances
return X_train, Y_train
def calc_output_mean_std(db, keys):
n = len(keys)
Y = np.empty((n, 14))
mean_std = np.empty((2, 14))
for i, key in enumerate(keys):
datum = caffe_pb2.Datum.FromString(db.get(key))
affordances = [j for j in datum.float_data]
affordances = np.array(affordances)
affordances = affordances.reshape(1, 14)
affordances = affordances.astype('float32')
Y[i] = affordances
mean_std[0] = np.mean(Y, axis=0)
mean_std[1] = np.std(Y, axis=0)
return mean_std
def calc_average(db, keys):
avg = np.zeros((3, 210, 280))
n = 0
for key in keys:
datum = caffe_pb2.Datum.FromString(db.get(key))
img = caffe.io.datum_to_array(datum)
avg = np.add(avg * n, img) / (n + 1)
n = n + 1
if K.image_dim_ordering() == 'tf':
avg = np.swapaxes(avg, 0, 1)
avg = np.swapaxes(avg, 1, 2)
# if 'th', leave as is
avg = avg.astype('float32')
# avg = avg / 255.0
return avg
def save_average(avg, filename):
h5f = h5py.File(filename, 'w')
h5f.create_dataset('average', data=avg)
h5f.close()
def load_average(filename):
h5f = h5py.File(filename, 'r')
avg = h5f['average'][:]
h5f.close()
return avg
def find_keys(db):
keys = []
for key, value in db:
keys.append(key)
return keys
def save_keys(keys):
with open('keys.txt', 'wb') as f:
f.writelines([b'%s\n' % key for key in keys])
def load_keys():
keys = []
with open('keys.txt', 'rb') as f:
keys = [line.strip() for line in f]
return keys
if __name__ == "__main__":
dbpath = '../TORCS_Training_1F/'
db = plyvel.DB(dbpath)
keys = load_keys()
avg = load_average('average_no_scale.h5')
mean_std = load_average('output_mean_std.h5')
if resize:
avg = cv2.resize(avg, dim) # bilinear
if random_order:
shuffle(keys)
model = train_incept(db, keys, avg, mean_std)
model.save('model_inception.h5')
db.close()
# X -= np.mean(X, axis = 0) # zero-center
# X /= np.std(X, axis = 0) # normalize