-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFT_trained_model.lua
261 lines (242 loc) · 7.93 KB
/
FT_trained_model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
-- this script takes as input a pre-trained autoencoder model and fine tunes it
--for classification
require 'torch'
require 'nn'
require 'nnx'
require 'optim'
require 'cutorch'
require 'cunn'
require 'pl'
require 'paths'
local matio = require 'matio'
----------------------------------------------------------------------
-- parse command-line options
local opt = lapp[[
-s,--save (default "mul-class/AE_6912_fc_6912_512_10clas_.0001/") subdirectory to save logs
-p,--plot plot while training
-o,--optimization (default "SGD") optimization: SGD | LBFGS
-r,--learningRate (default 0.0001) learning rate, for SGD only
-b,--batchSize (default 50) batch size
-m,--momentum (default 0.9) momentum, for SGD only
]]
-- fix seed
torch.manualSeed(1234)
torch.setdefaulttensortype('torch.FloatTensor')
-- threads
tot_epochs = 500
dropout_p = .5
-- load the model you want to fine tune for classifcation
model = torch.load('mul-class/AE_6912_.1_10class_r/'..'model.net')
no_outputs = 10
trainData = {
data = {},
labels = {},
size = function() return trsize end
}
testData = {
data = {},
labels = {},
size = function() return tesize end
}
local inD = 30
local featuresOut = inD * inD* inD
local cube_size = 30
trainData.data = matio.load('Data/mul-class/mul-class_tr_10_reduced.mat', 'tr_data_10_class_r')
trsize = trainData.data:size()[1]
print (trsize)
trainData.labels = matio.load('Data/mul-class/mul-class_tr_10_reduced.mat', 'tr_labels_r')
testData.data = matio.load('Data/mul-class/mul-class_te_10_reduced.mat', 'te_data_10_class_r')
tesize = testData.data:size()[1]
testData.labels = matio.load('Data/mul-class/mul-class_te_10_reduced.mat', 'te_labels_r')
print( tesize)
classes = {}
for i=1,no_outputs do
classes[i]=i
end
testData.labels = torch.reshape(testData.data,tesize ,featuresOut)
--dims of cube
desc_dims = {6912,6912}
-- features size
fSize = {1,64,256,256,64,1} -- cos now we have a fc layer
--fSize = {1,128,256,128,1}--
-- hidden units, filter sizes (for ConvNet only):
filtsize = {9,4,5,6}
--calculation for deconvolution layers
local dT = {2,3} --stride for deconv
local kT= 3 --upsampling
--local outD = (5-1) * dT + kT
--model = torch.load('mul-class/log_exp_64_256_64_.5_.001_40class_r_10_classifier/model.net')
--noutputs = opt.no_outputs
model:remove(15) --remove sigmoid as well
model:remove(14)
model:remove(13)
model:remove(12)
model:remove(11)
model:remove(10) --remove sigmoid as well
--model:add(nn.Dropout(dropout_p))
model:add(nn.Linear(6912,512))
model:add(nn.ReLU(true))
model:add(nn.Dropout(dropout_p))
model:add(nn.Linear(512,no_outputs))
model:add(nn.LogSoftMax())
print(model)
----------------------------------------------------
-- loss function: negative log-likelihood
criterion = nn.ClassNLLCriterion()
model:cuda()
criterion:cuda()
----------------------------------------------------------------------
-- define training and testing functions
-- log results to files
trainLogger = optim.Logger(paths.concat(opt.save, 'train.log'))
testLogger = optim.Logger(paths.concat(opt.save, 'test.log'))
parameters,gradParameters = model:getParameters()
print('loading params from the NN')
------------------
optimState = {
learningRate = opt.learningRate,
--weightDecay = opt.weightDecay,
momentum = opt.momentum,
learningRateDecay = 5e-7
}
optimMethod = optim.sgd
-- training function
confusion = optim.ConfusionMatrix(classes)
-- log results to files
trainLogger = optim.Logger(paths.concat(opt.save, 'train.log'))
--testLogger = optim.Logger(paths.concat(opt.save, 'test.log'))
parameters,gradParameters = model:getParameters()
print('loading params from the NN')
------------------
optimState = {
learningRate = opt.learningRate,
--weightDecay = opt.weightDecay,
momentum = opt.momentum,
learningRateDecay = 5e-7
}
optimMethod = optim.sgd
-- training function
function train(dataset)
-- epoch tracker
model:training()
epoch = epoch or 1
-- local vars
local time = sys.clock()
print '==> defining some tools'
-- do one epoch
print('<trainer> on training set:')
print("<trainer> online epoch # " .. epoch .. ' [batchSize = ' .. opt.batchSize .. ']')
for t = 1,dataset.data:size()[1],opt.batchSize do
-- create mini batch
local inputs = torch.Tensor(opt.batchSize,1,cube_size ,cube_size , cube_size )
targets = torch.Tensor(opt.batchSize)
inputs = inputs:cuda()
targets = targets:cuda()
local k = 1
for i = t,math.min(t+opt.batchSize-1,dataset.data:size()[1]) do
-- load new sample
local input = dataset.data[i]
local target = dataset.labels[i]
input = input:cuda()
target = target:cuda()
--target = target:squeeze()
inputs[k] = input
targets[k] = target
k = k + 1
end
-- create closure to evaluate f(X) and df/dX
local feval = function(x)
-- get new parameters
if x ~= parameters then
parameters:copy(x)
end
-- reset gradients
gradParameters:zero()
-- evaluate function for complete mini batch
local outputs = model:forward(inputs)
local f = criterion:forward(outputs, targets)
-- estimate df/dW
local df_do = criterion:backward(outputs, targets)
model:backward(inputs, df_do)
-- update confusion
confusion:batchAdd(outputs, targets)
-- return f and df/dX
return f,gradParameters
end
-- Perform SGD step:
optimMethod(feval, parameters, optimState)
-- disp progress
xlua.progress(t, dataset.data:size()[1])
end
-- time taken
time = sys.clock() - time
time = time / dataset.data:size()[1]
print("<trainer> time to learn 1 sample = " .. (time*1000) .. 'ms')
-- print confusion matrix
--confusion:updateValids()
print(confusion)
trainLogger:add{['% mean class accuracy (train set)'] = confusion.totalValid * 100}
confusion:zero()
-- save/log current net
local filename = paths.concat(opt.save, 'model.net')
os.execute('mkdir -p ' .. sys.dirname(filename))
if paths.filep(filename) then
os.execute('mv ' .. filename .. ' ' .. filename .. '.old')
end
print('<trainer> saving network to '..filename)
torch.save(filename, model)
-- next epoch
epoch = epoch + 1
end
-- test function
if 0 then
function test(dataset)
-- local vars
local time = sys.clock()
-- test over given dataset
print('<trainer> on testing Set:')
for t = 1,dataset:size(),opt.batchSize do
-- disp progress
xlua.progress(t, dataset:size())
-- create mini batch
local inputs = torch.Tensor(opt.batchSize,1,geometry[1],geometry[2])
local targets = torch.Tensor(opt.batchSize)
local k = 1
for i = t,math.min(t+opt.batchSize-1,dataset:size()) do
-- load new sample
local sample = dataset[i]
local input = sample[1]:clone()
local _,target = sample[2]:clone():max(1)
target = target:squeeze()
inputs[k] = input
targets[k] = target
k = k + 1
end
-- test samples
local preds = model:forward(inputs)
-- confusion:
for i = 1,opt.batchSize do
confusion:add(preds[i], targets[i])
end
end
-- timing
time = sys.clock() - time
time = time / dataset:size()
print("<trainer> time to test 1 sample = " .. (time*1000) .. 'ms')
end
end
----------------------------------------------------------------------
-- and train!
--
for t = 1,tot_epochs do
-- train/test
train(trainData)
--test(testData)
-- plot errors
if opt.plot then
trainLogger:style{['% mean class accuracy (train set)'] = '-'}
--testLogger:style{['% mean class accuracy (test set)'] = '-'}
trainLogger:plot()
--testLogger:plot()
end
end