-
Notifications
You must be signed in to change notification settings - Fork 508
/
Copy pathtrain.py
144 lines (119 loc) · 5.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2023 Baichuan Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import argparse
import deepspeed
import deepspeed.comm as dist
import numpy as np
import sentencepiece as spm
import torch
from models.configuration_baichuan import BaiChuanConfig
from models.modeling_baichuan import BaiChuanForCausalLM
def get_argument_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data_dir",
help="Text files to do pre-train on")
parser.add_argument("--tokenizer_path", type=str,
default="tokenizer.model",
help="Tokenizer model file path")
parser.add_argument("--max_length", type=int, default=4096,
help="Max tokens per sentence in corpus")
parser.add_argument("--steps_per_epoch", type=int, default=4096,
help="Step intervals to save checkpoint")
parser.add_argument("--checkpoint_saving_path", type=str,
default="checkpoints",
help="Path to store checkpoint files")
parser.add_argument("--local_rank", type=int, default=-1,
help="Reserved for deepspeed framework")
return parser
arg_parser = get_argument_parser()
arg_parser = deepspeed.add_config_arguments(arg_parser)
args = arg_parser.parse_args()
deepspeed.init_distributed()
class DataEngine():
def __init__(self, data_dir, tokenizer_path, micro_batch_size, max_length):
self.MIN_TEXT_LEN = 20
self.EOS_TOKEN_ID = 2
self.data_dir = data_dir
self.sp = spm.SentencePieceProcessor()
self.sp.Load(tokenizer_path)
self.micro_batch_size = micro_batch_size
self.max_length = max_length
self.data = []
self.global_input_paths = [self.data_dir + "/" + x
for x in os.listdir(self.data_dir)]
self.local_input_paths = [x for i, x in
enumerate(self.global_input_paths)
if i % dist.get_world_size() == dist.get_rank()]
def load_data(self):
for file_path in self.local_input_paths:
data = []
with open(file_path, encoding="utf-8", errors="ignore") as f:
for line_id, line in enumerate(f):
cc = self.sp.EncodeAsIds(line.strip()) + [self.EOS_TOKEN_ID]
if len(cc) < self.MIN_TEXT_LEN:
cc = []
data.extend(cc)
if len(data) >= self.micro_batch_size * (self.max_length + 1):
index = self.micro_batch_size * (self.max_length + 1)
self.data.append(data[:index])
data = []
return
def get_data(self):
data = self.data.pop(0)
seq = np.asarray(data).reshape(self.micro_batch_size, self.max_length + 1)
data = torch.LongTensor(seq)
data = data.cuda(non_blocking=True)
return data
def prepare_data():
data_dir = args.data_dir
tokenizer_path = args.tokenizer_path
ds_config = json.load(open(args.deepspeed_config))
micro_batch_size = ds_config["train_micro_batch_size_per_gpu"]
max_length = args.max_length
data_engine = DataEngine(data_dir, tokenizer_path, micro_batch_size, max_length)
data_engine.load_data()
return data_engine
def prepare_model():
with deepspeed.zero.Init(config_dict_or_path=args.deepspeed_config,
enabled=True,
mem_efficient_linear=False,
mpu=None):
model = BaiChuanForCausalLM(BaiChuanConfig())
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
model_engine, _, _, _ = deepspeed.initialize(args=args,
model=model,
optimizer=None,
model_parameters=model_parameters)
return model_engine
def train(data_engine, model_engine):
model_engine.train()
step = 0
while step < args.steps_per_epoch:
data = data_engine.get_data()
loss = model_engine(data, labels=data).loss
model_engine.backward(loss)
model_engine.step()
step += 1
return
if __name__ == "__main__":
data_engine = prepare_data()
model_engine = prepare_model()
epoch = 0
while True:
train(data_engine, model_engine)
epoch += 1
model_engine.save_checkpoint(f"{args.checkpoint_saving_path}",
tag=f"Epoch-{epoch}")