-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
607 lines (538 loc) · 21.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# forked from facebookresearch/generative-recommenders @ 6c61e25
# with modifications for compatibility with MoL training.
"""
Main entry point for model training. Please refer to README.md for usage instructions.
"""
import logging
import os
import random
from datetime import date
from typing import Dict, Optional
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" # Hide excessive tensorflow debug messages
import sys
import time
import fbgemm_gpu # noqa: F401, E402
import gin
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from absl import app, flags
from data.eval import (
_avg,
add_to_summary_writer,
eval_metrics_v2_from_tensors,
get_eval_state,
)
from data.reco_dataset import get_reco_dataset
from indexing.utils_rails import get_top_k_module
from modeling.sequential.autoregressive_losses import (
BCELoss,
InBatchNegativesSampler,
LocalNegativesSampler,
)
from modeling.sequential.losses.sampled_softmax import SampledSoftmaxLoss
from modeling.sequential.embedding_modules import EmbeddingModule, LocalEmbeddingModule
from modeling.sequential.encoder_utils import get_sequential_encoder
from modeling.sequential.features import movielens_seq_features_from_row
from modeling.sequential.input_features_preprocessors import (
LearnablePositionalEmbeddingInputFeaturesPreprocessor,
)
from modeling.sequential.output_postprocessors import (
L2NormEmbeddingPostprocessor,
LayerNormEmbeddingPostprocessor,
)
from modeling.similarity_utils import get_similarity_function
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from trainer.data_loader import create_data_loader
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
flags.DEFINE_string("gin_config_file", None, "Path to the config file.")
flags.DEFINE_integer("master_port", 12355, "Master port.")
flags.DEFINE_string(
"restore_from_ckpt", None, "Continue training from specific checkpoint if set."
)
FLAGS = flags.FLAGS
def setup(rank: int, world_size: int, master_port: int) -> None:
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(master_port)
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
@gin.configurable
def get_weighted_loss(
main_loss: torch.Tensor,
aux_losses: Dict[str, torch.Tensor],
weights: Dict[str, float],
) -> torch.Tensor:
weighted_loss = main_loss
for key, weight in weights.items():
cur_weighted_loss = aux_losses[key] * weight
weighted_loss = weighted_loss + cur_weighted_loss
return weighted_loss
@gin.configurable
def train_fn(
rank: int,
world_size: int,
master_port: int,
restore_from_ckpt: str = "",
dataset_name: str = "ml-20m",
max_sequence_length: int = 200,
positional_sampling_ratio: float = 1.0,
custom_date_str: str = "",
local_batch_size: int = 128,
eval_batch_size: int = 128,
eval_user_max_batch_size: Optional[int] = None,
main_module: str = "SASRec",
main_module_bf16: bool = False,
eval_bf16: bool = False,
dropout_rate: float = 0.2,
user_embedding_norm: str = "l2_norm",
sampling_strategy: str = "in-batch",
loss_module: str = "SampledSoftmaxLoss",
loss_weights: Dict[str, float] = {},
num_negatives: int = 1,
loss_activation_checkpoint: bool = False,
item_l2_norm: bool = False,
temperature: float = 0.05,
num_epochs: int = 101,
learning_rate: float = 1e-3,
num_warmup_steps: int = 0,
weight_decay: float = 1e-3,
top_k_method: str = "MIPSBruteForceTopK",
eval_interval: int = 100,
full_eval_every_n: int = 1,
save_ckpt_every_n: int = 1000,
partial_eval_num_iters: int = 32,
embedding_module_type: str = "local",
item_embedding_dim: int = 240,
interaction_module_type: str = "",
gr_output_length: int = 10,
l2_norm_eps: float = 1e-6,
enable_tf32: bool = False,
random_seed: int = 42,
) -> None:
# to enable more deterministic results.
random.seed(random_seed)
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.backends.cuda.matmul.allow_tf32 = enable_tf32
torch.backends.cudnn.allow_tf32 = enable_tf32
logging.info(f"cuda.matmul.allow_tf32: {enable_tf32}")
logging.info(f"cudnn.allow_tf32: {enable_tf32}")
logging.info(f"Training model on rank {rank}.")
setup(rank, world_size, master_port)
# mp.set_sharing_strategy('file_system')
dataset = get_reco_dataset(
dataset_name=dataset_name,
max_sequence_length=max_sequence_length,
chronological=True,
positional_sampling_ratio=positional_sampling_ratio,
)
train_data_sampler, train_data_loader = create_data_loader(
dataset.train_dataset,
batch_size=local_batch_size,
world_size=world_size,
rank=rank,
shuffle=True,
drop_last=world_size > 1,
)
eval_data_sampler, eval_data_loader = create_data_loader(
dataset.eval_dataset,
batch_size=eval_batch_size,
world_size=world_size,
rank=rank,
shuffle=True, # needed for partial eval
drop_last=world_size > 1,
)
model_debug_str = main_module
if embedding_module_type == "local":
embedding_module: EmbeddingModule = LocalEmbeddingModule(
num_items=dataset.max_item_id,
item_embedding_dim=item_embedding_dim,
)
else:
raise ValueError(f"Unknown embedding_module_type {embedding_module_type}")
model_debug_str += f"-{embedding_module.debug_str()}"
interaction_module, interaction_module_debug_str = get_similarity_function(
module_type=interaction_module_type,
query_embedding_dim=item_embedding_dim,
item_embedding_dim=item_embedding_dim,
)
assert (
user_embedding_norm == "l2_norm" or user_embedding_norm == "layer_norm"
), f"Not implemented for {user_embedding_norm}"
output_postproc_module = (
L2NormEmbeddingPostprocessor(
embedding_dim=item_embedding_dim,
eps=1e-6,
)
if user_embedding_norm == "l2_norm"
else LayerNormEmbeddingPostprocessor(
embedding_dim=item_embedding_dim,
eps=1e-6,
)
)
input_preproc_module = LearnablePositionalEmbeddingInputFeaturesPreprocessor(
max_sequence_len=dataset.max_sequence_length + gr_output_length + 1,
embedding_dim=item_embedding_dim,
dropout_rate=dropout_rate,
)
model = get_sequential_encoder(
module_type=main_module,
max_sequence_length=dataset.max_sequence_length,
max_output_length=gr_output_length + 1,
embedding_module=embedding_module,
interaction_module=interaction_module,
input_preproc_module=input_preproc_module,
output_postproc_module=output_postproc_module,
verbose=True,
)
model_debug_str = model.debug_str()
# loss
loss_debug_str = loss_module
if loss_module == "BCELoss":
loss_debug_str = loss_debug_str[:-4]
assert temperature == 1.0
ar_loss = BCELoss(temperature=temperature, model=model)
elif loss_module == "SampledSoftmaxLoss":
loss_debug_str = "ssl"
if temperature != 1.0:
loss_debug_str += f"-t{temperature}"
ar_loss = SampledSoftmaxLoss(
num_to_sample=num_negatives,
softmax_temperature=temperature,
model=model,
activation_checkpoint=loss_activation_checkpoint,
)
loss_debug_str += (
f"-n{num_negatives}{'-ac' if loss_activation_checkpoint else ''}"
)
else:
raise ValueError(f"Unrecognized loss module {loss_module}.")
if loss_weights:
loss_debug_str += "-lw" + "-".join(
[f"{k}:{v}" for k, v in loss_weights.items()]
)
# sampling
if sampling_strategy == "in-batch":
negatives_sampler = InBatchNegativesSampler(
l2_norm=item_l2_norm,
l2_norm_eps=l2_norm_eps,
dedup_embeddings=True,
)
sampling_debug_str = (
f"in-batch{f'-l2-eps{l2_norm_eps}' if item_l2_norm else ''}-dedup"
)
elif sampling_strategy == "local":
negatives_sampler = LocalNegativesSampler(
num_items=dataset.max_item_id,
item_emb=model._embedding_module._item_emb,
all_item_ids=dataset.all_item_ids,
l2_norm=item_l2_norm,
l2_norm_eps=l2_norm_eps,
)
else:
raise ValueError(f"Unrecognized sampling strategy {sampling_strategy}.")
sampling_debug_str = negatives_sampler.debug_str()
# Creates model and moves it to GPU with id rank
device = rank
if main_module_bf16:
model = model.to(torch.bfloat16)
model = model.to(device)
ar_loss = ar_loss.to(device)
negatives_sampler = negatives_sampler.to(device)
model = DDP(model, device_ids=[rank], broadcast_buffers=False)
# TODO: wrap in create_optimizer.
opt = torch.optim.AdamW(
model.parameters(),
lr=learning_rate,
betas=(0.9, 0.98),
weight_decay=weight_decay,
)
if not custom_date_str:
date_str = date.today().strftime("%Y-%m-%d")
else:
date_str = custom_date_str
model_subfolder = f"{dataset_name}-l{max_sequence_length}"
model_desc = (
f"{model_subfolder}"
+ f"/{model_debug_str}_{interaction_module_debug_str}_{sampling_debug_str}_{loss_debug_str}"
+ f"{f'-ddp{world_size}' if world_size > 1 else ''}-b{local_batch_size}-lr{learning_rate}-wu{num_warmup_steps}-wd{weight_decay}{'' if enable_tf32 else '-notf32'}-{date_str}"
)
if full_eval_every_n > 1:
model_desc += f"-fe{full_eval_every_n}"
if positional_sampling_ratio is not None and positional_sampling_ratio < 1:
model_desc += f"-d{positional_sampling_ratio}"
# creates subfolders.
os.makedirs(f"./exps/{model_subfolder}", exist_ok=True)
os.makedirs(f"./ckpts/{model_subfolder}", exist_ok=True)
log_dir = f"./exps/{model_desc}"
if rank == 0:
writer = SummaryWriter(log_dir=log_dir)
logging.info(f"Rank {rank}: writing logs to {log_dir}")
else:
writer = None
logging.info(f"Rank {rank}: disabling summary writer")
if restore_from_ckpt:
checkpoint = torch.load(restore_from_ckpt)
model.load_state_dict(checkpoint["model_state_dict"])
opt.load_state_dict(checkpoint["optimizer_state_dict"])
epoch = checkpoint["epoch"] + 1 # do not overwrite checkpoint!
logging.info(
f"Restored model and optimizer state from epoch {checkpoint['epoch']}'s ckpt: {restore_from_ckpt}. Setting cur_epoch to {epoch}"
)
else:
epoch = 0
last_training_time = time.time()
# torch.autograd.set_detect_anomaly(True)
batch_id = 0
while epoch < num_epochs:
if train_data_sampler is not None:
train_data_sampler.set_epoch(epoch)
if eval_data_sampler is not None:
eval_data_sampler.set_epoch(epoch)
model.train()
for row in iter(train_data_loader):
seq_features, target_ids, target_ratings = movielens_seq_features_from_row(
row,
device=device,
max_output_length=gr_output_length + 1,
)
if (batch_id % eval_interval) == 0:
model.eval()
eval_state = get_eval_state(
model=model.module,
all_item_ids=dataset.all_item_ids,
negatives_sampler=negatives_sampler,
top_k_module_fn=lambda item_embeddings, item_ids: get_top_k_module(
top_k_method=top_k_method,
model=model.module,
item_embeddings=item_embeddings,
item_ids=item_ids,
),
device=device,
float_dtype=(
torch.bfloat16 if main_module_bf16 or eval_bf16 else None
),
)
eval_dict = eval_metrics_v2_from_tensors(
eval_state,
model.module,
seq_features,
target_ids=target_ids,
target_ratings=target_ratings,
user_max_batch_size=eval_user_max_batch_size,
dtype=torch.bfloat16 if main_module_bf16 or eval_bf16 else None,
)
add_to_summary_writer(
writer, batch_id, eval_dict, prefix="eval", world_size=world_size
)
logging.info(
f"rank {rank}: batch-stat (eval): iter {batch_id} (epoch {epoch}): "
+ f"NDCG@10 {_avg(eval_dict['ndcg@10'], world_size):.4f}, "
f"HR@10 {_avg(eval_dict['hr@10'], world_size):.4f}, "
f"HR@50 {_avg(eval_dict['hr@50'], world_size):.4f}, "
+ f"MRR {_avg(eval_dict['mrr'], world_size):.4f} "
)
model.train()
# TODO: consider separating this out?
B, N = seq_features.past_ids.shape
seq_features.past_ids.scatter_(
dim=1,
index=seq_features.past_lengths.view(-1, 1),
src=target_ids.view(-1, 1),
)
opt.zero_grad()
input_embeddings = model.module.get_item_embeddings(seq_features.past_ids)
seq_embeddings = model(
past_lengths=seq_features.past_lengths,
past_ids=seq_features.past_ids,
past_embeddings=input_embeddings,
past_payloads=seq_features.past_payloads,
) # [B, X]
supervision_ids = seq_features.past_ids
if sampling_strategy == "in-batch":
# get_item_embeddings currently assume 1-d tensor.
in_batch_ids = supervision_ids.view(-1)
negatives_sampler.process_batch(
ids=in_batch_ids,
presences=(in_batch_ids != 0),
embeddings=model.module.get_item_embeddings(in_batch_ids),
)
else:
negatives_sampler._item_emb = model.module._embedding_module._item_emb
ar_mask = supervision_ids[:, 1:] != 0
loss, aux_losses = ar_loss(
lengths=seq_features.past_lengths, # [B],
output_embeddings=seq_embeddings[:, :-1, :], # [B, N-1, D]
supervision_ids=supervision_ids[:, 1:], # [B, N-1]
supervision_embeddings=input_embeddings[:, 1:, :], # [B, N - 1, D]
supervision_weights=ar_mask.float(),
negatives_sampler=negatives_sampler,
**seq_features.past_payloads,
) # [B, N]
if rank == 0:
writer.add_scalar("losses/ar_loss", loss, batch_id)
main_loss = loss.detach().clone()
loss = get_weighted_loss(loss, aux_losses, weights=loss_weights)
loss.backward()
# Optional linear warmup.
if batch_id < num_warmup_steps:
lr_scalar = min(1.0, float(batch_id + 1) / num_warmup_steps)
for pg in opt.param_groups:
pg["lr"] = lr_scalar * learning_rate
lr = lr_scalar * learning_rate
else:
lr = learning_rate
if (batch_id % eval_interval) == 0:
logging.info(
f" rank: {rank}, batch-stat (train): step {batch_id} "
f"(epoch {epoch} in {time.time() - last_training_time:.2f}s): {loss:.6f}"
)
last_training_time = time.time()
if rank == 0:
writer.add_scalar("loss/train", main_loss, batch_id)
writer.add_scalar("loss/incl_aux/train", loss, batch_id)
for key, value in aux_losses.items():
writer.add_scalar(f"loss/{key}/train", value.float(), batch_id)
writer.add_scalar("lr", lr, batch_id)
opt.step()
batch_id += 1
def is_full_eval(epoch: int) -> bool:
return (epoch % full_eval_every_n) == 0
# eval per epoch
eval_dict_all = None
eval_start_time = time.time()
model.eval()
eval_state = get_eval_state(
model=model.module,
all_item_ids=dataset.all_item_ids,
negatives_sampler=negatives_sampler,
top_k_module_fn=lambda item_embeddings, item_ids: get_top_k_module(
top_k_method=top_k_method,
model=model.module,
item_embeddings=item_embeddings,
item_ids=item_ids,
),
device=device,
float_dtype=torch.bfloat16 if main_module_bf16 or eval_bf16 else None,
)
for eval_iter, row in enumerate(iter(eval_data_loader)):
seq_features, target_ids, target_ratings = movielens_seq_features_from_row(
row, device=device, max_output_length=gr_output_length + 1
)
eval_dict = eval_metrics_v2_from_tensors(
eval_state,
model.module,
seq_features,
target_ids=target_ids,
target_ratings=target_ratings,
user_max_batch_size=eval_user_max_batch_size,
dtype=torch.bfloat16 if main_module_bf16 or eval_bf16 else None,
)
if eval_dict_all is None:
eval_dict_all = {}
for k, v in eval_dict.items():
eval_dict_all[k] = []
for k, v in eval_dict.items():
eval_dict_all[k] = eval_dict_all[k] + [v]
del eval_dict
if (eval_iter + 1 >= partial_eval_num_iters) and (not is_full_eval(epoch)):
logging.info(
f"Truncating epoch {epoch} eval to {eval_iter + 1} iters to save cost.."
)
break
for k, v in eval_dict_all.items():
eval_dict_all[k] = torch.cat(v, dim=-1)
ndcg_10 = _avg(eval_dict_all["ndcg@10"], world_size=world_size)
ndcg_50 = _avg(eval_dict_all["ndcg@50"], world_size=world_size)
hr_10 = _avg(eval_dict_all["hr@10"], world_size=world_size)
hr_50 = _avg(eval_dict_all["hr@50"], world_size=world_size)
mrr = _avg(eval_dict_all["mrr"], world_size=world_size)
add_to_summary_writer(
writer,
batch_id=epoch,
metrics=eval_dict_all,
prefix="eval_epoch",
world_size=world_size,
)
if full_eval_every_n > 1 and is_full_eval(epoch):
add_to_summary_writer(
writer,
batch_id=epoch,
metrics=eval_dict_all,
prefix="eval_epoch_full",
world_size=world_size,
)
if rank == 0 and epoch > 0 and (epoch % save_ckpt_every_n) == 0:
torch.save(
{
"epoch": epoch,
"batch_id": batch_id,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": opt.state_dict(),
},
f"./ckpts/{model_desc}_ep{epoch}",
)
logging.info(
f"rank {rank}: eval @ epoch {epoch} in {time.time() - eval_start_time:.2f}s: "
f"NDCG@10 {ndcg_10:.4f}, NDCG@50 {ndcg_50:.4f}, HR@10 {hr_10:.4f}, HR@50 {hr_50:.4f}, MRR {mrr:.4f}"
)
last_training_time = time.time()
epoch += 1
if rank == 0:
if writer is not None:
writer.flush()
writer.close()
torch.save(
{
"epoch": epoch,
"batch_id": batch_id,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": opt.state_dict(),
},
f"./ckpts/{model_desc}_ep{epoch}",
)
cleanup()
def mp_train_fn(
rank: int,
world_size: int,
master_port: int,
gin_config_file: Optional[str],
restore_from_ckpt: str,
) -> None:
if gin_config_file is not None:
# Hack as absl doesn't support flag parsing inside multiprocessing.
logging.info(f"Rank {rank}: loading gin config from {gin_config_file}")
gin.parse_config_file(gin_config_file)
train_fn(rank, world_size, master_port, restore_from_ckpt=restore_from_ckpt)
def main(argv):
world_size = torch.cuda.device_count()
mp.set_start_method("forkserver")
mp.spawn(
mp_train_fn,
args=(
world_size,
FLAGS.master_port,
FLAGS.gin_config_file,
FLAGS.restore_from_ckpt,
),
nprocs=world_size,
join=True,
)
if __name__ == "__main__":
app.run(main)