-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathBeamFormer2.py
142 lines (105 loc) · 4.7 KB
/
BeamFormer2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/python
# -*- coding: utf-8 -*-
import math
import numpy as np
import cmath
import soundfile as sf
def delay_f(x, time, fs):
N = len(x)
x_f = np.fft.fft(x)
y_f = np.zeros(N, dtype=np.complex_)
w = np.array(range(0, N / 2 + 1) + range(-N / 2 + 1, 0)) / float(N) * float(fs)
for f in range(0, N):
delay_factor = cmath.exp(-1j * 2 * math.pi * w[f] * time) # steering vector for this frequency
y_f[f] = x_f[f] * delay_factor
y = np.fft.ifft(y_f).real
return y
class BeamFormer:
def __init__(self, d, m):
self.d = d # distance between microphones in meters
self.c = 343.0 # speed of sound
self.M = m # number of microphones (should be 2)
def phase_mask(
self,
X,
doa_steer,
phase_diff_threshold,
N,
nframes,
fs,
):
fft_win = 4 * nframes
hann = np.hanning(fft_win)
in_buff = np.zeros([self.M + 2, fft_win])
out_buff = np.zeros([5, 3, fft_win])
w = np.array(range(0, fft_win / 2 + 1) + range(-fft_win / 2 + 1, 0)) / float(fft_win) * float(fs)
w_c = np.ones([self.M, fft_win], dtype=np.complex_)
w_c[1, :] = np.exp(1j * 2 * math.pi * w * (self.d / self.c) * np.sin(doa_steer))
X_f = np.zeros([self.M, fft_win], dtype=np.complex_)
out_buff_ini_shift = int(fft_win * 3 / 4) - int(nframes / 2)
out_buff_last_shift = int(fft_win / 4) - int(nframes / 2)
o_ = np.zeros([5, N])
for sample_i in range(0, N, nframes):
in_buff[:, fft_win - nframes:fft_win] = X[:, sample_i:sample_i + nframes]
in_buff_hann = np.multiply(in_buff, hann)
X_f[0, :] = np.fft.fft(in_buff_hann[0])
X_f[1, :] = np.fft.fft(in_buff_hann[1])
X_f[1, :] = np.multiply(w_c[1, :], X_f[1, :])
this_m0_phase = np.angle(X_f[0])
this_m1_phase = np.angle(X_f[1])
phase_diff = np.abs(this_m0_phase - this_m1_phase)
freq_mask = np.array([phase_diff < phase_diff_threshold, phase_diff >= phase_diff_threshold]).astype(float)
m0_signal_source = np.fft.ifft(X_f[0, :] * freq_mask[0]).real
m1_signal_source = np.fft.ifft(X_f[1, :] * freq_mask[0]).real
m0_signal_int = np.fft.ifft(X_f[0, :] * freq_mask[1]).real
m1_signal_int = np.fft.ifft(X_f[1, :] * freq_mask[1]).real
out_buff[0, 2, :] = (m0_signal_source + m1_signal_source) / 2.0 # np.fft.ifft(X_f[0, :] * freq_mask[0]).real
out_buff[1, 2, :] = (m0_signal_int + m1_signal_int) / 2.0 # np.fft.ifft(X_f[0, :] * freq_mask[1]).real
out_buff[2, 2, :] = in_buff_hann[0] # m0
out_buff[3, 2, :] = in_buff_hann[2] # source
out_buff[4, 2, :] = in_buff_hann[3] # interf
o_[:, sample_i:sample_i + nframes] = out_buff[:, 0,
out_buff_ini_shift:out_buff_ini_shift + nframes] + out_buff[:, 2,
out_buff_last_shift:out_buff_last_shift + nframes]
in_buff = np.roll(in_buff, -nframes, axis=1)
out_buff = np.roll(out_buff, -1, axis=1)
return o_
def main():
d = 0.21 # distance between microphones in meters
M = 2 # number of microphones (should be 2)
c = 343.0
doa1 = 20 * math.pi / 180.0
doa2 = -40 * math.pi / 180.0
doa3 = 80 * math.pi / 180.0
doa_steer = doa1
phase_diff_threshold = 30.0 * math.pi / 180.0
(s1, samplerate1) = sf.read('25-88353-0001.flac')
(s2, samplerate2) = sf.read('153-126652-0004.flac')
(s3, samplerate3) = sf.read('392-131210-0003.flac')
fs = samplerate1
N = min(len(s1), len(s2), len(s3))
nframes = 1024
win_num = int(N / nframes)
N = nframes * win_num
N = nframes * (8 + 4 + 3)
s1 = s1[0:N]
s2 = s2[0:N]
s3 = s3[0:N]
X = np.zeros([M + 2, N])
X[0, :] = s1 + s2 + s3
X[1, :] = delay_f(np.array(s1), d / c * math.sin(doa1), fs) \
+ delay_f(np.array(s2), d / c * math.sin(doa2), fs) \
+ delay_f(np.array(s3), d / c * math.sin(doa3), fs)
X[2, :] = s1
X[3, :] = s2 + s3
bf = BeamFormer(d=d, m=M)
o_ = bf.phase_mask(X=X, doa_steer=doa_steer, phase_diff_threshold=phase_diff_threshold, N=N, nframes=nframes, fs=fs)
o_ = o_[:, nframes * 4:nframes * -3]
print(o_.shape)
sf.write('phase_soi.wav', o_[0, :], fs)
sf.write('phase_int.wav', o_[1, :], fs)
sf.write('phase_m0.wav', o_[2, :], fs)
sf.write('phase_original_source.wav', o_[3, :], fs)
sf.write('phase_original_interf.wav', o_[4, :], fs)
if __name__ == "__main__":
main()