-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocalLLM.py
90 lines (71 loc) · 2.86 KB
/
localLLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# localLLM.py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from os import environ
from dotenv import load_dotenv
load_dotenv()
hf_access_token = environ["HF_TOKEN"]
class LocalLLM:
def __init__(self):
self.model_name = None
self.tokenizer = None
self.model = None
self.conversation_history = []
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if available
def select_model(self, model = None):
while True:
if model == None: # Allow manual input of choice otherwise pass the selection from API server request
print("Welcome to the LLM Chat Program!")
print("Please select a model:")
print("1. LLaMA 2")
print("2. Mistral")
choice = int(input("Enter the number of your choice (1 or 2): ").strip())
else:
choice = 1
if choice == 1:
self.model_name = "meta-llama/Llama-2-7b-chat-hf"
break
elif choice == 2:
self.model_name = "mistralai/Mistral-7B-Instruct-v0.1"
break
else:
print("Invalid choice. Please try again.")
print(f"Loading {self.model_name}...")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, token=hf_access_token)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to(self.device)
print(f"Model loaded successfully on {self.device}.")
def generate_response(self, query):
full_prompt = "\n".join(self.conversation_history + [f"You: {query}", "AI:"])
inputs = self.tokenizer.encode(full_prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_length=2048,
temperature=0.7,
num_return_sequences=1,
do_sample=True
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
ai_response = response.split("AI:")[-1].strip()
self.conversation_history.append(f"You: {query}")
self.conversation_history.append(f"AI: {ai_response}")
return ai_response
def chat(self, query):
if query == None: # Not required if using
print("Type 'exit' to end the conversation.")
while True:
query = input("You: ").strip()
if query.lower() == 'exit':
break
response = self.generate_response(query)
print("AI:", response)
def main():
llm = LocalLLM()
llm.select_model()
llm.chat()
if __name__ == "__main__":
main()