Skip to content

Latest commit

 

History

History
65 lines (54 loc) · 1.88 KB

README.md

File metadata and controls

65 lines (54 loc) · 1.88 KB

Transformer-ReImplementation

DMIS 연구실에서 진행한 Transformer 모델 재구현 프로젝트입니다. (Attention is All You Need (2017))

Usage

Train

python main.py --mode train
python main.py --mode train --checkpoint ./checkpoints/model_5.pt --run_name from_epoch_5 --data_path ./data --tokenizer_path ./tokenizer --lr 1e-4

Evaluate

python main.py --mode eval

Inference

python main.py --mode test

Optional Arguments

Argument Default Description
--checkpoint None Checkpoint path
--tokenizer_path None Path of pretrained tokenizer
--data_path ./data Data path of train/val/test
--output_path ./output Output path (for inference)
--batch_size 32 batch size
--num_epochs 10 number of epochs
--device cuda Device type (cpu or cuda)
--lr 1e-4 Learning rate
--run_name From scratch WandB Run name

Dataset

IWSLT2017 en-de 데이터셋 (https://huggingface.co/datasets/iwslt2017)

Environment

NVIDIA GeForce RTX 3060 (12GB VRAM)

Settings

학습에 사용한 하이퍼파라미터는 다음과 같습니다.

Name Value
Epochs 8
Batch size 32
Learning rate 1e-4
Dropout 0.1

Result

Validation BLEU score는 아래와 같습니다.

validation_score

BLEU가 가장 높은 체크포인트를 대상으로 Test를 진행하였으며, 결과는 아래와 같습니다.

Model BLEU
Transformer(Base, Paper) 27.3
Transformer(Ours) 20.1

References

원 논문 이외에 아래 레퍼런스를 추가로 참고하여 구현하였습니다.