-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathburner.cpp
287 lines (246 loc) · 7.53 KB
/
burner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#include "burner.hpp"
using namespace std;
/*----------------------------------------------------------*/
/* arrondi pour ne conserver que n chiffres significatifs */
/*----------------------------------------------------------*/
double arrondi ( double x , int n ) {
if (fabs(x) < EPS)
return 0.0;
double m = pow ( 10 , ceil(-log10(x)) + n - 1 );
return round(m*x)/m;
}
/*---------------------------------------------------------------*/
burner::burner ( int nb , chemical ** chem ) {
rem_nb = nb;
NO=NO2=N2O=CO=0.0;
m = new double[nb];
can_burn = new bool[nb];
// combustion.prop :
// -----------------
// 64-17-5 3 2 3
// 74-82-8 2 1 2
// 1333-74-0 0.5 0 1
// 100-42-5 10 8 4
// 74-85-1 3 2 2
// 108-88-3 9 7 4
// 100-41-4 10.5 8 5
// 71-43-2 7.5 6 3
for ( i = 0 ; i < nb ; i++ ) {
can_burn[i] = false;
if ( chem[i]->CAS == "64-17-5" ||
chem[i]->CAS == "74-82-8" ||
chem[i]->CAS == "1333-74-0" ||
chem[i]->CAS == "100-42-5" ||
chem[i]->CAS == "74-85-1" ||
chem[i]->CAS == "108-88-3" ||
chem[i]->CAS == "100-41-4" ||
chem[i]->CAS == "71-43-2" )
can_burn[i] = true;
}
O2 = new chemical ("7782-44-7");
N2 = new chemical ("7727-37-9");
CO2 = new chemical ("124-38-9");
H2O = new chemical ("7732-18-5");
// Construct the rx array;
rx = new combrx * [nb];
for ( i = 0 ; i < nb ; i++ ) {
if ( can_burn[i] )
rx[i] = new combrx ( chem[i]->CAS );
else
rx[i] = NULL;
}
}
/*---------------------------------------------------------------*/
burner::~burner ( void ) {
delete [] m;
delete [] can_burn;
for ( i = 0 ; i < rem_nb ; i++ )
if (rx[i])
delete rx[i];
delete [] rx;
delete O2;
delete N2;
delete CO2;
delete H2O;
}
/*---------------------------------------------------------------*/
bool burner::solve(double * y)
{
OK=true;
//perform mass balance (neglect pollutants flows)
out->m = 0.0;
for(i=0;i<in->nb;i++)
{
if (!can_burn[i]) {
out->chem[i]->m = in->chem[i]->m;
out->m+=out->chem[i]->m;
}
else {
out->chem[i]->m=0.0;
O2->m+=rx[i]->O2_flow()*in->chem[i]->n();
N2->m+=rx[i]->N2_flow()*in->chem[i]->n();
CO2->m+=rx[i]->CO2_flow()*in->chem[i]->n();
H2O->m+=rx[i]->H2O_flow()*in->chem[i]->n();
}
}
N2->m*=(1.0+eta);
O2->m*=(1.0+eta);
//perform energy balance to find Tout
T = in->T;
step=10;
Q=1;
// find temperature
while (fabs(step)>TOL_BURN && fabs(Q)>TOL_BURN && T<MAX_TEMP)
{
T+=step;
if(T>MAX_TEMP)
T=MAX_TEMP;
Q = 0.0;
for ( i = 0 ; i < in->nb ; i++ )
Q += in->chem[i]->dH ( in->T , T , in->P ) * in->chem[i]->n();
for ( i = 0 ; i < in->nb ; i++ )
if ( can_burn[i] )
Q += rx[i]->Hcomb(T) * in->chem[i]->n();
Q += O2->dH ( 293 , T , in->P ) * O2->n();
Q += N2->dH ( 293 , T , in->P ) * N2->n();
if (step/fabs(step)*Q >0)
step*= -0.1;
else if (fabs(Q)<10)
step*=0.25;
}
out->set_thermo(in->thermo);
// out->thermo = in->thermo;
out->set(in->P, T);
O2->P=in->P; O2->T=T; O2->state=1; O2->find_v();
N2->P=in->P; N2->T=T; N2->state=1; N2->find_v();
CO2->P=in->P; CO2->T=T; CO2->state=1; CO2->find_v();
H2O->P=in->P; H2O->T=T; H2O->state=1; H2O->find_v();
//check if mixture can burn
m_can_burn = 0.0;
for(i=0;i<in->nb;i++) if(can_burn[i]) m_can_burn+=in->chem[i]->n();
LFLmix=0.0;
for(i=0;i<in->nb;i++) if(can_burn[i]) LFLmix+=in->chem[i]->n()/m_can_burn*rx[i]->LFL(in->P,T);
UFLmix=0.0;
for(i=0;i<in->nb;i++) if(can_burn[i]) UFLmix+=in->chem[i]->n()/m_can_burn*rx[i]->UFL(in->P,T);
num = 0.0;
buff=in->T; in->set(in->P, T);
for(i=0;i<in->nb;i++) if(can_burn[i]) num+=in->chem[i]->n()/in->n()*in->v;
in->set(in->P, buff);
den = O2->v+N2->v+out->v;
composition = num/den;
if(!(LFLmix<=composition && composition<=UFLmix) || T==MAX_TEMP)
{
// logf.open(MESSAGES,ios::app);
// logf<<" --> Warning <-- Mixture in "<<name<<" can't burn (LFL="<<LFLmix
// <<" UFL="<<UFLmix<<" x="<<composition<<").\n";
// logf.close();
T=in->T;
filename = out->name;
*out=*in;
out->set(filename);
// out->write(); // WRITE TOTO
OK=false;
}
else
{
O2->P=in->P; O2->T=T; O2->state=1; O2->find_v();
N2->P=in->P; N2->T=T; N2->state=1; N2->find_v();
// out->write(); // WRITE TOTO
}
if(OK) //compute the pollutants production
{
fill_K_array();
NO = 1e6*sqrt(K[0]*(N2->n()/den)*(O2->n()/den))*den*0.03/(O2->m+N2->m+out->m+H2O->m+CO2->m);
N2O = 1e6*K[1]*(N2->n()/den)*sqrt(O2->n()/den)*den*0.044/(O2->m+N2->m+out->m+H2O->m+CO2->m);
NO2 = 1e6*K[2]*sqrt(N2->n()/den)*(O2->n()/den)*den*0.046/(O2->m+N2->m+out->m+H2O->m+CO2->m);
CO = 1e6*K[3]*(CO2->n()/den)*den/sqrt(O2->n()/den)*0.028/(O2->m+N2->m+out->m+H2O->m+CO2->m);
}
// logf.open(MESSAGES,ios::app);
if (NO>EPS && NO2>EPS && N2O>EPS) {
// logf<<" --> Warning <-- Presence of NOx: "<<(NO+NO2+N2O)<<" ppm in "<<name<<".\n";
y[7] = NO+NO2+N2O;
if (ARRONDI)
y[7] = arrondi ( y[7] , 6 );
}
if (CO>EPS) {
// logf<<" --> Warning <-- Presence of CO: "<<CO<<" ppm in "<<name<<".\n";
y[8] = CO;
if (ARRONDI)
y[8] = arrondi ( y[8] , 6 );
}
// logf.close();
return OK;
}
void burner::fill_K_array()
{
a[0]=1.0; a[1]=1.0; a[2]=0.5; a[3]=1.0;
b[0]=1.0; b[1]=0.5; b[2]=1.0; b[3]=-0.5;
c[0]=2.0; c[1]=1.0; c[2]=1.0; c[3]=1.0;
K[0] = exp(-120.27*(173.38-T*0.012)/T);
K[1] = exp(-120.27*(103.64+T*0.074)/T);
K[2] = exp(-120.27*(51.96+T*0.061)/T);
K[3] = exp(-120.27*(283.84-T*0.087)/T);
for(i=0;i<4;i++)
K[i]*=pow(1000, c[i]-a[i]-b[i]);
}
void burner::write() {
cout << setprecision(6);
cout << "WRITE FILE " << RUNTIME << name << ".unit" << " :\n\tBEGIN\n";
cout << "\t>> " << name;
cout << endl << "\t>> stream in : " << in->name;
cout << endl << "\t>> streams out : " << out->name;
cout << endl << "\t>> P = " << in->P << " atm, T(in) = " << in->T
<< " T(out) = " << T << " K";
O2->P = 1;
O2->T = 293;
O2->state = 1;
O2->find_v();
N2->P=1;
N2->T=293;
N2->state=1;
N2->find_v();
cout << endl << "\t>> Required air flow = "
<< (O2->m+N2->m) << " kg/s (" << (O2->v+N2->v) << " m3/s)";
O2->P=in->P;
O2->T=T;
O2->state=1;
O2->find_v();
N2->P=in->P;
N2->T=T;
N2->state=1;
N2->find_v();
step=(eta*O2->v/(1+eta)+N2->v+H2O->v+CO2->v+out->v);
cout << endl << "\t>> Total flue gases = "
<< (out->m+CO2->m+H2O->m+N2->m+eta*O2->m/(1+eta))
<<" kg/s (" << step << " m3/s)";
cout << "\n\tEND\n\n";
cost();
}
double burner::get_cost ( void ) {
O2->P = 1;
O2->T = 293;
O2->state = 1;
O2->find_v();
N2->P=1;
N2->T=293;
N2->state=1;
N2->find_v();
O2->P=in->P;
O2->T=T;
O2->state=1;
O2->find_v();
N2->P=in->P;
N2->T=T;
N2->state=1;
N2->find_v();
step=(eta*O2->v/(1+eta)+N2->v+H2O->v+CO2->v+out->v);
buff = 3.1761-0.1373*log10(step) + 0.3414*pow(log10(step),2);
buff = 2.7*pow(10, buff);
buff = buff*MS_YEAR/MS_2001;
return buff;
}
void burner::cost ( void ) {
cout << "WRITE FILE " << RUNTIME << name << ".cost" << " :\n\tBEGIN\n";
cout << "\t>>" << get_cost();
cout << "\n\tEND\n\n";
}