-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_joint.py
835 lines (718 loc) · 36.8 KB
/
train_joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
# Author: bbrighttaer
# Project: jova
# Date: 7/22/19
# Time: 10:47 AM
# File: train_joint.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import copy
import json
import random
import time
from datetime import datetime as dt
import numpy as np
import torch
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim.lr_scheduler as sch
from soek import *
from soek.bopt import GPMinArgs
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import jova.metrics as mt
import jova.utils.io
from jova import cuda
from jova.data import batch_collator, get_data, load_proteins, DtiDataset
from jova.metrics import compute_model_performance
from jova.nn.layers import GraphConvLayer, GraphPool, GraphGather
from jova.nn.models import GraphConvSequential, PairSequential, create_fcn_layers
from jova.trans import undo_transforms
from jova.utils import Trainer
from jova.utils.args import FcnArgs, Flags
from jova.utils.io import save_model, load_model
from jova.utils.math import ExpAverage, Count
from jova.utils.tb import TBMeanTracker
from jova.utils.train_helpers import count_parameters
currentDT = dt.now()
date_label = currentDT.strftime("%Y_%m_%d__%H_%M_%S")
seeds = [1, 8, 64]
check_data = False
dvc_id = 2
torch.cuda.set_device(dvc_id)
def create_integrated_net(hparams):
# segment 1 - graphconv
gconv_model = GraphConvSequential(GraphConvLayer(in_dim=75, out_dim=64),
nn.BatchNorm1d(64),
nn.ReLU(),
GraphPool(),
GraphConvLayer(in_dim=64, out_dim=64),
nn.BatchNorm1d(64),
nn.ReLU(),
GraphPool(),
nn.Linear(in_features=64, out_features=hparams["gconv_dim"]),
nn.BatchNorm1d(hparams["gconv_dim"]),
nn.ReLU(),
nn.Dropout(hparams["dprob"]),
GraphGather())
# segment 2 - fingerprint
fp_net = nn.Identity()
# segment 3 - protein
prot_net = nn.Identity()
civ_net = PairSequential((PairSequential(mod1=(gconv_model,),
mod2=(fp_net,)),),
(prot_net,))
civ_dim = hparams["prot_dim"] + hparams["gconv_dim"] * 2 + hparams["fp_dim"]
fcn_args = []
p = civ_dim
layers = hparams["hdims"]
if not isinstance(layers, list):
layers = [layers]
for dim in layers:
conf = FcnArgs(in_features=p,
out_features=dim,
activation='relu',
batch_norm=True,
dropout=hparams["dprob"])
fcn_args.append(conf)
p = dim
fcn_args.append(FcnArgs(in_features=p, out_features=hparams['output_dim']))
fcn_layers = create_fcn_layers(fcn_args)
model = nn.Sequential(civ_net, *fcn_layers)
return model
class IntegratedViewDTI(Trainer):
@staticmethod
def initialize(hparams, train_dataset, val_dataset, test_dataset, cuda_devices=None, mode="regression"):
# create network
model = create_integrated_net(hparams)
print("Number of trainable parameters = {}".format(count_parameters(model)))
if cuda:
model = model.cuda()
# data loaders
train_data_loader = DataLoader(dataset=train_dataset,
batch_size=hparams["tr_batch_size"],
shuffle=True,
collate_fn=lambda x: x)
val_data_loader = DataLoader(dataset=val_dataset,
batch_size=hparams["val_batch_size"],
shuffle=False,
collate_fn=lambda x: x)
test_data_loader = None
if test_dataset is not None:
test_data_loader = DataLoader(dataset=test_dataset,
batch_size=hparams["test_batch_size"],
shuffle=False,
collate_fn=lambda x: x)
# optimizer configuration
optimizer = {
"adadelta": torch.optim.Adadelta,
"adagrad": torch.optim.Adagrad,
"adam": torch.optim.Adam,
"adamax": torch.optim.Adamax,
"asgd": torch.optim.ASGD,
"rmsprop": torch.optim.RMSprop,
"Rprop": torch.optim.Rprop,
"sgd": torch.optim.SGD,
}.get(hparams["optimizer"].lower(), None)
assert optimizer is not None, "{} optimizer could not be found"
# filter optimizer arguments
optim_kwargs = dict()
optim_key = hparams["optimizer"]
for k, v in hparams.items():
if "optimizer__" in k:
attribute_tup = k.split("__")
if optim_key == attribute_tup[1] or attribute_tup[1] == "global":
optim_kwargs[attribute_tup[2]] = v
optimizer = optimizer(model.parameters(), **optim_kwargs)
# metrics
metrics = [mt.Metric(mt.rms_score, np.nanmean),
mt.Metric(mt.concordance_index, np.nanmean),
mt.Metric(mt.pearson_r2_score, np.nanmean)]
return model, optimizer, {"train": train_data_loader,
"val": val_data_loader,
"test": test_data_loader}, metrics
@staticmethod
def data_provider(fold, flags, data_dict):
if not flags['cv']:
print("Training scheme: train, validation" + (", test split" if flags['test'] else " split"))
train_dataset = DtiDataset(x_s=[data[1][0].X for data in data_dict.values()],
y_s=[data[1][0].y for data in data_dict.values()],
w_s=[data[1][0].w for data in data_dict.values()])
valid_dataset = DtiDataset(x_s=[data[1][1].X for data in data_dict.values()],
y_s=[data[1][1].y for data in data_dict.values()],
w_s=[data[1][1].w for data in data_dict.values()])
test_dataset = None
if flags['test']:
test_dataset = DtiDataset(x_s=[data[1][2].X for data in data_dict.values()],
y_s=[data[1][2].y for data in data_dict.values()],
w_s=[data[1][2].w for data in data_dict.values()])
data = {"train": train_dataset, "val": valid_dataset, "test": test_dataset}
else:
train_dataset = DtiDataset(x_s=[data[1][fold][0].X for data in data_dict.values()],
y_s=[data[1][fold][0].y for data in data_dict.values()],
w_s=[data[1][fold][0].w for data in data_dict.values()])
valid_dataset = DtiDataset(x_s=[data[1][fold][1].X for data in data_dict.values()],
y_s=[data[1][fold][1].y for data in data_dict.values()],
w_s=[data[1][fold][1].w for data in data_dict.values()])
test_dataset = DtiDataset(x_s=[data[1][fold][2].X for data in data_dict.values()],
y_s=[data[1][fold][2].y for data in data_dict.values()],
w_s=[data[1][fold][2].w for data in data_dict.values()])
data = {"train": train_dataset, "val": valid_dataset, "test": test_dataset}
return data
@staticmethod
def evaluate(eval_dict, y, y_pred, w, metrics, tasks, transformers):
eval_dict.update(compute_model_performance(metrics, y_pred.cpu().detach().numpy(), y, w, transformers,
tasks=tasks))
# scoring
rms = np.nanmean(eval_dict["nanmean-rms_score"])
ci = np.nanmean(eval_dict["nanmean-concordance_index"])
r2 = np.nanmean(eval_dict["nanmean-pearson_r2_score"])
score = np.nanmean([ci, r2]) - rms
return score
@staticmethod
def train(model, optimizer, data_loaders, metrics, transformers_dict, prot_desc_dict, tasks, n_iters=5000,
sim_data_node=None, tb_writer=None, epoch_ckpt=(2, 1.0), is_hsearch=False):
tb_writer = tb_writer()
start = time.time()
best_model_wts = model.state_dict()
best_score = -10000
best_epoch = -1
terminate_training = False
e_avg = ExpAverage(.01)
n_epochs = n_iters // len(data_loaders["train"])
scheduler = sch.StepLR(optimizer, step_size=400, gamma=0.01)
criterion = torch.nn.MSELoss()
# sub-nodes of sim data resource
loss_lst = []
train_loss_node = DataNode(label="training_loss", data=loss_lst)
metrics_dict = {}
metrics_node = DataNode(label="validation_metrics", data=metrics_dict)
scores_lst = []
scores_node = DataNode(label="validation_score", data=scores_lst)
# add sim data nodes to parent node
if sim_data_node:
sim_data_node.data = [train_loss_node, metrics_node, scores_node]
try:
# Main training loop
tb_idx = Count()
for epoch in range(n_epochs):
if terminate_training:
print("Terminating training...")
break
for phase in ["train", "val" if is_hsearch else "test"]:
if phase == "train":
print("Training....")
# Training mode
model.train()
else:
print("Validation...")
# Evaluation mode
model.eval()
data_size = 0.
epoch_losses = []
epoch_scores = []
# Iterate through mini-batches
i = 0
with TBMeanTracker(tb_writer, 10) as tracker:
for batch in tqdm(data_loaders[phase]):
batch_size, data = batch_collator(batch, prot_desc_dict, spec={"gconv": True,
"ecfp8": True})
# organize the data for each view.
Xs = {}
Ys = {}
Ws = {}
for view_name in data:
view_data = data[view_name]
if view_name == "gconv":
x = ((view_data[0][0], batch_size), view_data[0][1])
Xs["gconv"] = x
else:
Xs[view_name] = view_data[0]
Ys[view_name] = np.array([k for k in view_data[1]], dtype=np.float)
Ws[view_name] = np.array([k for k in view_data[2]], dtype=np.float)
optimizer.zero_grad()
# forward propagation
# track history if only in train
with torch.set_grad_enabled(phase == "train"):
Ys = {k: Ys[k].astype(np.float) for k in Ys}
# Ensure corresponding pairs
for j in range(1, len(Ys.values())):
assert (list(Ys.values())[j - 1] == list(Ys.values())[j]).all()
y = Ys[list(Xs.keys())[0]]
w = Ws[list(Xs.keys())[0]]
X = ((Xs["gconv"][0], Xs["ecfp8"][0]), Xs["gconv"][1])
# forward pass
outputs = model(X)
target = torch.from_numpy(y).float()
weights = torch.from_numpy(w).float()
if cuda:
target = target.cuda()
weights = weights.cuda()
outputs = outputs * weights
loss = criterion(outputs, target)
if str(loss.item()) == "nan":
terminate_training = True
break
# metrics
eval_dict = {}
score = IntegratedViewDTI.evaluate(eval_dict, y, outputs, w, metrics, tasks,
transformers_dict['gconv'])
# TBoard info
tracker.track("%s/loss" % phase, loss.item(), tb_idx.IncAndGet())
tracker.track("%s/score" % phase, score, tb_idx.i)
for k in eval_dict:
tracker.track('{}/{}'.format(phase, k), eval_dict[k], tb_idx.i)
if phase == "train":
print("\tEpoch={}/{}, batch={}/{}, loss={:.4f}".format(epoch + 1, n_epochs, i + 1,
len(data_loaders[phase]),
loss.item()))
# for epoch stats
epoch_losses.append(loss.item())
# for sim data resource
loss_lst.append(loss.item())
# optimization ops
loss.backward()
optimizer.step()
else:
# for epoch stats
epoch_scores.append(score)
# for sim data resource
scores_lst.append(score)
for m in eval_dict:
if m in metrics_dict:
metrics_dict[m].append(eval_dict[m])
else:
metrics_dict[m] = [eval_dict[m]]
print("\nEpoch={}/{}, batch={}/{}, "
"evaluation results= {}, score={}".format(epoch + 1, n_epochs, i + 1,
len(data_loaders[phase]),
eval_dict, score))
i += 1
data_size += batch_size
# End of mini=batch iterations.
if phase == "train":
ep_loss = np.nanmean(epoch_losses)
e_avg.update(ep_loss)
if epoch % (epoch_ckpt[0] - 1) == 0 and epoch > 0:
if e_avg.value > epoch_ckpt[1]:
terminate_training = True
# Adjust the learning rate.
scheduler.step()
print("\nPhase: {}, avg task loss={:.4f}, ".format(phase, np.nanmean(epoch_losses)))
else:
mean_score = np.mean(epoch_scores)
if best_score < mean_score:
best_score = mean_score
best_model_wts = copy.deepcopy(model.state_dict())
best_epoch = epoch
except RuntimeError as e:
print(str(e))
duration = time.time() - start
print('\nModel training duration: {:.0f}m {:.0f}s'.format(duration // 60, duration % 60))
model.load_state_dict(best_model_wts)
return {'model': model, 'score': best_score, 'epoch': best_epoch}
@staticmethod
def evaluate_model(model, model_dir, model_name, data_loaders, metrics, transformers_dict, prot_desc_dict,
tasks, sim_data_node=None):
# load saved model and put in evaluation mode
model.load_state_dict(load_model(model_dir, model_name, dvc=torch.device(f'cuda:{dvc_id}')))
model.eval()
print("Model evaluation...")
start = time.time()
n_epochs = 1
# sub-nodes of sim data resource
# loss_lst = []
# train_loss_node = DataNode(label="training_loss", data=loss_lst)
metrics_dict = {}
metrics_node = DataNode(label="validation_metrics", data=metrics_dict)
scores_lst = []
scores_node = DataNode(label="validation_score", data=scores_lst)
predicted_vals = []
true_vals = []
model_preds_node = DataNode(label="model_predictions", data={"y": true_vals,
"y_pred": predicted_vals})
# add sim data nodes to parent node
if sim_data_node:
sim_data_node.data = [metrics_node, scores_node, model_preds_node]
# Main evaluation loop
for epoch in range(n_epochs):
for phase in ["test"]:
# Iterate through mini-batches
i = 0
for batch in tqdm(data_loaders[phase]):
batch_size, data = batch_collator(batch, prot_desc_dict, spec={"gconv": True,
"ecfp8": True})
# organize the data for each view.
Xs = {}
Ys = {}
Ws = {}
for view_name in data:
view_data = data[view_name]
if view_name == "gconv":
x = ((view_data[0][0], batch_size), view_data[0][1])
Xs["gconv"] = x
else:
Xs[view_name] = view_data[0]
Ys[view_name] = np.array([k for k in view_data[1]], dtype=np.float)
Ws[view_name] = np.array([k for k in view_data[2]], dtype=np.float)
# forward propagation
with torch.set_grad_enabled(False):
Ys = {k: Ys[k].astype(np.float) for k in Ys}
# Ensure corresponding pairs
for i in range(1, len(Ys.values())):
assert (list(Ys.values())[i - 1] == list(Ys.values())[i]).all()
y_true = Ys[list(Xs.keys())[0]]
w = Ws[list(Xs.keys())[0]]
weights = torch.from_numpy(w).float()
X = ((Xs["gconv"][0], Xs["ecfp8"][0]), Xs["gconv"][1])
y_predicted = model(X)
if cuda:
weights = weights.cuda()
y_predicted = y_predicted * weights
# apply transformers
predicted_vals.extend(undo_transforms(y_predicted.cpu().detach().numpy(),
transformers_dict["gconv"]).squeeze().tolist())
true_vals.extend(undo_transforms(y_true, transformers_dict["gconv"])
.astype(np.float).squeeze().tolist())
eval_dict = {}
score = IntegratedViewDTI.evaluate(eval_dict, y_true, y_predicted, w, metrics, tasks,
transformers_dict["gconv"])
# for sim data resource
scores_lst.append(score)
for m in eval_dict:
if m in metrics_dict:
metrics_dict[m].append(eval_dict[m])
else:
metrics_dict[m] = [eval_dict[m]]
print("\nEpoch={}/{}, batch={}/{}, "
"evaluation results= {}, score={}".format(epoch + 1, n_epochs, i + 1,
len(data_loaders[phase]),
eval_dict, score))
i += 1
# End of mini=batch iterations.
duration = time.time() - start
print('\nModel evaluation duration: {:.0f}m {:.0f}s'.format(duration // 60, duration % 60))
def main(pid, flags):
sim_label = 'integrated_view_ecfp8_gconv_psc'
print(sim_label)
# Simulation data resource tree
split_label = "warm" if flags["split_warm"] else "cold_target" if flags["cold_target"] else "cold_drug" if \
flags["cold_drug"] else "None"
dataset_lbl = flags["dataset_name"]
# node_label = "{}_{}_{}_{}_{}".format(dataset_lbl, sim_label, split_label, "eval" if flags["eval"] else "train",
# date_label)
node_label = json.dumps({'model_family': 'IntView',
'dataset': dataset_lbl,
'split': split_label,
'seeds': '-'.join([str(s) for s in seeds]),
'mode': "eval" if flags["eval"] else "train",
'date': date_label
})
sim_data = DataNode(label=node_label)
nodes_list = []
sim_data.data = nodes_list
num_cuda_dvcs = torch.cuda.device_count()
cuda_devices = None if num_cuda_dvcs == 1 else [i for i in range(1, num_cuda_dvcs)]
prot_desc_dict, prot_seq_dict = load_proteins(flags['prot_desc_path'])
# For searching over multiple seeds
hparam_search = None
for seed in seeds:
summary_writer_creator = lambda: SummaryWriter(
log_dir="tb_int_view/{}_{}_{}/".format(sim_label, seed, dt.now().strftime("%Y_%m_%d__%H_%M_%S")))
# for data collection of this round of simulation.
data_node = DataNode(label="seed_%d" % seed)
nodes_list.append(data_node)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# load data
print('-------------------------------------')
print('Running on dataset: %s' % dataset_lbl)
print('-------------------------------------')
data_dict = dict()
transformers_dict = dict()
# Data
data_dict["gconv"] = get_data("GraphConv", flags, prot_sequences=prot_seq_dict, seed=seed)
transformers_dict["gconv"] = data_dict["gconv"][2]
data_dict["ecfp8"] = get_data("ECFP8", flags, prot_sequences=prot_seq_dict, seed=seed)
transformers_dict["ecfp8"] = data_dict["ecfp8"][2]
tasks = data_dict["gconv"][0]
# multi-task or single task is determined by the number of tasks w.r.t. the dataset loaded
flags["tasks"] = tasks
trainer = IntegratedViewDTI()
if flags["cv"]:
k = flags["fold_num"]
print("{}, {}-Prot: Training scheme: {}-fold cross-validation".format(tasks, sim_label, k))
else:
k = 1
print("{}, {}-Prot: Training scheme: train, validation".format(tasks, sim_label)
+ (", test split" if flags['test'] else " split"))
if check_data:
verify_multiview_data(data_dict)
else:
if flags["hparam_search"]:
print("Hyperparameter search enabled: {}".format(flags["hparam_search_alg"]))
# arguments to callables
extra_init_args = {"mode": "regression",
"cuda_devices": cuda_devices}
extra_data_args = {"flags": flags,
"data_dict": data_dict}
n_iters = 3000
extra_train_args = {"transformers_dict": transformers_dict,
"prot_desc_dict": prot_desc_dict,
"tasks": tasks,
"is_hsearch": True,
"tb_writer": summary_writer_creator}
hparams_conf = get_hparam_config(flags)
if hparam_search is None:
search_alg = {"random_search": RandomSearch,
"bayopt_search": BayesianOptSearch}.get(flags["hparam_search_alg"],
BayesianOptSearch)
search_args = GPMinArgs(n_calls=40, random_state=seed)
hparam_search = search_alg(hparam_config=hparams_conf,
num_folds=k,
initializer=trainer.initialize,
data_provider=trainer.data_provider,
train_fn=trainer.train,
save_model_fn=jova.utils.io.save_model,
alg_args=search_args,
init_args=extra_init_args,
data_args=extra_data_args,
train_args=extra_train_args,
data_node=data_node,
split_label=split_label,
sim_label=sim_label,
dataset_label=dataset_lbl,
results_file="{}_{}_dti_{}.csv".format(flags["hparam_search_alg"],
sim_label, date_label))
stats = hparam_search.fit(model_dir="models", model_name="".join(tasks))
print(stats)
print("Best params = {}".format(stats.best()))
else:
invoke_train(trainer, tasks, data_dict, transformers_dict, flags, prot_desc_dict, data_node,
sim_label, summary_writer_creator)
# save simulation data resource tree to file.
sim_data.to_json(path="./analysis/")
def invoke_train(trainer, tasks, data_dict, transformers_dict, flags, prot_desc_dict, data_node, view, tb_writer):
hyper_params = default_hparams_bopt(flags)
# Initialize the model and other related entities for training.
if flags["cv"]:
folds_data = []
data_node.data = folds_data
data_node.label = data_node.label + "cv"
for k in range(flags["fold_num"]):
k_node = DataNode(label="fold-%d" % k)
folds_data.append(k_node)
start_fold(k_node, data_dict, flags, hyper_params, prot_desc_dict, tasks, trainer,
transformers_dict, view, tb_writer, k)
else:
start_fold(data_node, data_dict, flags, hyper_params, prot_desc_dict, tasks, trainer,
transformers_dict, view, tb_writer)
def start_fold(sim_data_node, data_dict, flags, hyper_params, prot_desc_dict, tasks, trainer,
transformers_dict, view, tb_writer, k=None):
data = trainer.data_provider(k, flags, data_dict)
model, optimizer, data_loaders, metrics = trainer.initialize(hparams=hyper_params,
train_dataset=data["train"],
val_dataset=data["val"],
test_dataset=data["test"])
if flags["eval"]:
trainer.evaluate_model(model, flags["model_dir"], flags["eval_model_name"],
data_loaders, metrics, transformers_dict,
prot_desc_dict, tasks, sim_data_node=sim_data_node)
else:
# Train the model
results = trainer.train(model, optimizer, data_loaders, metrics, transformers_dict, prot_desc_dict, tasks,
n_iters=10000, sim_data_node=sim_data_node, tb_writer=tb_writer)
model, score, epoch = results['model'], results['score'], results['epoch']
# Save the model.
split_label = "warm" if flags["split_warm"] else "cold_target" if flags["cold_target"] else "cold_drug" if \
flags["cold_drug"] else "None"
save_model(model, flags["model_dir"],
"{}_{}_{}_{}_{}_{:.4f}".format(flags["dataset_name"], view, flags["model_name"], split_label, epoch,
score))
def default_hparams_rand(flags):
return {
"prot_dim": 8421,
"fp_dim": 1024,
"gconv_dim": 128,
"hdims": [3795, 2248, 2769, 2117],
# weight initialization
"kaiming_constant": 5,
# dropout regs
"dprob": 0.0739227,
"tr_batch_size": 256,
"val_batch_size": 512,
"test_batch_size": 512,
# optimizer params
"optimizer": "rmsprop",
"optimizer__sgd__weight_decay": 1e-4,
"optimizer__sgd__nesterov": True,
"optimizer__sgd__momentum": 0.9,
"optimizer__sgd__lr": 1e-3,
"optimizer__adam__weight_decay": 1e-4,
"optimizer__adam__lr": 1e-3,
"optimizer__rmsprop__lr": 0.000235395,
"optimizer__rmsprop__weight_decay": 0.000146688,
"optimizer__rmsprop__momentum": 0.00622082,
"optimizer__rmsprop__centered": False
}
def default_hparams_bopt(flags):
return {
'output_dim': len(flags['tasks']),
"prot_dim": 8421,
"fp_dim": 1024,
"gconv_dim": 256,
"hdims": [5000, 2365, 4010, 683],
# weight initialization
"kaiming_constant": 5,
# dropout
"dprob": 0.01,
"tr_batch_size": 128,
"val_batch_size": 512,
"test_batch_size": 512,
# optimizer params
"optimizer": "adagrad",
"optimizer__global__weight_decay": 0.0015941869555157072,
"optimizer__global__lr": 0.00026862820936991103,
"optimizer__adagrad__lr_decay": 0.000496165,
}
def get_hparam_config(flags):
return {
'output_dim': ConstantParam(len(flags['tasks'])),
"prot_dim": ConstantParam(8421),
"fp_dim": ConstantParam(1024),
"gconv_dim": CategoricalParam(choices=[128, 256, 512]),
"hdims": DiscreteParam(min=256, max=5000, size=DiscreteParam(min=1, max=4)),
# weight initialization
"kaiming_constant": ConstantParam(5), # DiscreteParam(min=2, max=9),
# dropout regs
"dprob": LogRealParam(min=-2),
"tr_batch_size": CategoricalParam(choices=[128, 256]),
"val_batch_size": ConstantParam(512),
"test_batch_size": ConstantParam(512),
# optimizer params
"optimizer": CategoricalParam(choices=["sgd", "adam", "adadelta", "adagrad", "adamax", "rmsprop"]),
"optimizer__global__weight_decay": LogRealParam(),
"optimizer__global__lr": LogRealParam(),
"optimizer__sgd__momentum": LogRealParam(),
# "optimizer__sgd__nesterov": CategoricalParam(choices=[True, False]),
# "optimizer__adam__amsgrad": CategoricalParam(choices=[True, False]),
# "optimizer__adadelta__rho": LogRealParam(),
# "optimizer__adagrad__lr_decay": LogRealParam(),
# "optimizer__rmsprop__momentum": LogRealParam(),
}
def verify_multiview_data(data_dict):
ecfp8_data = data_dict["ecfp8"][1][0]
gconv_data = data_dict["gconv"][1][0]
corr = []
for i in range(100):
print("-" * 100)
ecfp8 = "mol={}, prot={}, y={}".format(ecfp8_data.X[i][0].smiles, ecfp8_data.X[i][1].get_name(),
ecfp8_data.y[i])
print("ecfp8:", ecfp8)
gconv = "mol={}, prot={}, y={}".format(gconv_data.X[i][0].smiles, gconv_data.X[i][1].get_name(),
gconv_data.y[i])
print("gconv:", gconv)
print('#' * 100)
corr.append(ecfp8 == gconv)
print(corr)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="DTI with jova model training.")
parser.add_argument("--dataset_name",
type=str,
default="davis",
help="Dataset name.")
parser.add_argument("--dataset_file",
type=str,
help="Dataset file.")
# Either CV or standard train-val(-test) split.
scheme = parser.add_mutually_exclusive_group()
scheme.add_argument("--fold_num",
default=-1,
type=int,
choices=range(3, 11),
help="Number of folds for cross-validation")
scheme.add_argument("--test",
action="store_true",
help="Whether a test set should be included in the data split")
parser.add_argument("--splitting_alg",
choices=["random", "scaffold", "butina", "index", "task"],
default="random",
type=str,
help="Data splitting algorithm to use.")
parser.add_argument('--filter_threshold',
type=int,
default=6,
help='Threshold such that entities with observations no more than it would be filtered out.'
)
parser.add_argument('--split',
help='Splitting scheme to use. Options are: [warm, cold_drug, cold_target, cold_drug_target]',
action='append',
type=str,
dest='split_schemes'
)
parser.add_argument('--model_dir',
type=str,
default='./model_dir',
help='Directory to store the log files in the training process.'
)
parser.add_argument('--model_name',
type=str,
default='model-{}'.format(date_label),
help='Directory to store the log files in the training process.'
)
parser.add_argument('--prot_desc_path',
action='append',
help='A list containing paths to protein descriptors.'
)
parser.add_argument('--no_reload',
action="store_false",
dest='reload',
help='Whether datasets will be reloaded from existing ones or newly constructed.'
)
parser.add_argument('--latent_dimension',
type=int,
default=100,
help='The dimension of the latent space, same as annotation dimension.')
parser.add_argument("--hparam_search",
action="store_true",
help="If true, hyperparameter searching would be performed.")
parser.add_argument("--hparam_search_alg",
type=str,
default="bayopt_search",
help="Hyperparameter search algorithm to use. One of [bayopt_search, random_search]")
parser.add_argument("--eval",
action="store_true",
help="If true, a saved model is loaded and evaluated using CV")
parser.add_argument("--eval_model_name",
default=None,
type=str,
help="The filename of the model to be loaded from the directory specified in --model_dir")
parser.add_argument('--mp', '-mp', action='store_true', help="Multiprocessing option")
args = parser.parse_args()
procs = []
use_mp = args.mp
for split in args.split_schemes:
flags = Flags()
args_dict = args.__dict__
for arg in args_dict:
setattr(flags, arg, args_dict[arg])
setattr(flags, "cv", True if flags.fold_num > 2 else False)
flags['split'] = split
flags['predict_cold'] = split == 'cold_drug_target'
flags['cold_drug'] = split == 'cold_drug'
flags['cold_target'] = split == 'cold_target'
flags['cold_drug_cluster'] = split == 'cold_drug_cluster'
flags['split_warm'] = split == 'warm'
if use_mp:
p = mp.spawn(fn=main, args=(flags,), join=False)
procs.append(p)
# p.start()
else:
main(0, flags)
for proc in procs:
proc.join()