-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathCARC.m
66 lines (61 loc) · 2.99 KB
/
CARC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
% Cross-Age Celebrity Coding
% Reference: Bor-Chun Chen, Chu-Song Chen, Winston Hsu. Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval, ECCV, 2014
% http://bcsiriuschen.github.io/CARC/
function [CRAC_Feature] = CARC(celebrityImageData, celebrityData, lambda, lambda2, imageIndex)
%initialize some variables
nPart = 16;
pcaDim = 500;
cNum = size(find(celebrityData.rank <= 20 & celebrityData.rank > 5),1);
nPts = size(imageIndex,1);
CRAC_Feature = zeros(nPts, cNum*nPart);
celebrityIdentity = find(celebrityData.rank <= 20 & celebrityData.rank > 5);
groupNum = 10;
group{groupNum,cNum} = 0;
for i = 1:cNum
group{1,i} = find(celebrityImageData.identity == celebrityIdentity(i) & celebrityImageData.year == 2004);
group{2,i} = find(celebrityImageData.identity == celebrityIdentity(i) & celebrityImageData.year == 2005);
group{3,i} = find(celebrityImageData.identity == celebrityIdentity(i) & celebrityImageData.year == 2006);
group{4,i} = find(celebrityImageData.identity == celebrityIdentity(i) & celebrityImageData.year == 2007);
group{5,i} = find(celebrityImageData.identity == celebrityIdentity(i) & celebrityImageData.year == 2008);
group{6,i} = find(celebrityImageData.identity == celebrityIdentity(i) & celebrityImageData.year == 2009);
group{7,i} = find(celebrityImageData.identity == celebrityIdentity(i) & celebrityImageData.year == 2010);
group{8,i} = find(celebrityImageData.identity == celebrityIdentity(i) & celebrityImageData.year == 2011);
group{9,i} = find(celebrityImageData.identity == celebrityIdentity(i) & celebrityImageData.year == 2012);
group{10,i} = find(celebrityImageData.identity == celebrityIdentity(i) & celebrityImageData.year == 2013);
end
L = zeros(cNum*(groupNum-2), cNum*groupNum);
for j = 1:(groupNum-2)
L(1 + (j-1)*cNum:j*cNum, 1 + (j-1)*cNum:j*cNum) = eye(cNum);
L(1 + (j-1)*cNum:j*cNum, 1 + j*cNum:(j+1)*cNum) = -2*eye(cNum);
L(1 + (j-1)*cNum:j*cNum, 1 + (j+1)*cNum:(j+2)*cNum) = eye(cNum);
end
for p = 1:nPart
partIndex = [1 + (p-1)*pcaDim:p*pcaDim];
partAll = celebrityImageData.pcaFeature(:,partIndex);
partAll = normalizeL2(partAll);
partX = partAll(imageIndex,:);
partX = repmat(partX, 1, groupNum);
partD = zeros(groupNum*pcaDim, groupNum*cNum);
%Step-1 Reference Set Representations
for j = 1:groupNum
cX = zeros(cNum, pcaDim);
for i = 1:cNum
if(size(group{j,i},1) ~= 0)
cX(i,:) = mean(partAll(group{j,i},:));
end
end
partD(1+(j-1)*pcaDim:j*pcaDim, 1+(j-1)*cNum:j*cNum) = cX';
end
%Step-2 Encoding Feature
A = (partD'*partD + lambda*eye(size(partD,2)) + lambda2*L'*L)\partD'*partX';
%Step-3 Max Pooling
A = reshape(A, cNum, groupNum, nPts);
result = zeros(cNum, nPts);
resultSign = zeros(cNum, nPts);
result(:,:) = max(abs(A), [], 2);
resultSign(:,:) = max(A, [], 2);
resultSign = double(resultSign == result);
resultSign(find(resultSign == 0)) = -1;
result = resultSign.*result;
CRAC_Feature(:,1+(p-1)*cNum:p*cNum) = result';
end