-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGame_Hand.cpp
1255 lines (1130 loc) · 54.1 KB
/
Game_Hand.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "Game_Hand.h"
#include <set>
#include <vector>
#include <iostream> // just for debugging TODO: remove include
#include <algorithm> // std::find
#include <mutex> // only for test (writing to std::cout in thread)
#include "Card.h"
#include "Deck.h"
int Game_Hand::points_for(const Card& card) const
{
// TODO: magic numbers, scoring options
// note: this came out as one of the top functions in a code profiling, so don't make it too complex
if (card.get_suit() == HEARTS)
return 1;
if (card.get_value() == 12 && card.get_suit() == SPADES)
return 13;
return 0;
}
void Game_Hand::speculate_hands(const int& player_speculating, const int& passing_direction)
{
/** replace hands with player's guess about the other players' hands
(so the computer doesn't cheat)
to be called in a simulation */
std::vector<Deck> speculated_hands(PLAYER_COUNT);
std::vector<int> space_remaining_in(PLAYER_COUNT);
// variables used for distributing cards:
std::vector<std::unordered_set<int> > hands_that_allow_suit(SUIT_COUNT); // index is suit // TODO
std::unordered_set<int> non_full_hands;
std::vector<int> allow_suit_and_non_full; // intersection of non-full-hands with hands that allow this suit
for (int i = 0; i < PLAYER_COUNT; ++i)
{
space_remaining_in[i] = hands[i].size();
}
// I know my own hand
space_remaining_in[player_speculating] = 0;
// cards I passed to someone
// (this section should do nothing ( space remaining -= 0 ) when called for passing ai)
const int WHOM_I_PASSED_TO = (player_speculating + passing_direction) % PLAYER_COUNT;
space_remaining_in[WHOM_I_PASSED_TO] -= passed_cards_to_player[WHOM_I_PASSED_TO].size();
// prepare to distribute unknown cards
// which hands are not full
for (int player = 0; player < PLAYER_COUNT; ++player)
{
if (space_remaining_in[player] > 0)
non_full_hands.insert(player);
}
// which hands can hold which suits (exclude player_speculating, hand that is not speculated)
for (int suit = 0; suit < SUIT_COUNT; ++suit)
{
for (int player = 0; player < PLAYER_COUNT; ++player)
{
if (player_seen_void_in_suits[player].count(suit) == 0)
{
if (player != player_speculating) // (exclude player_speculating, hand that is not speculated)
{
hands_that_allow_suit[suit].insert(player);
}
}
/*
else // player is void in suit TODO: this else is just for testing, remove
{
if (player != player_speculating) // (exclude player_speculating, hand that is not speculated)
{
std::cout << " player " << player << " has no ";
switch (suit)
{
case CLUBS:
std::cout << "clubs\n";
break;
case DIAMONDS:
std::cout << "diamonds\n";
break;
case SPADES:
std::cout << "spades\n";
break;
case HEARTS:
std::cout << "hearts\n";
}
}
}
*/
} // players
} // suits
// distribute unknown cards
/*
Algorithm for distributing unknown cards
For each card in the unknown cards: ( *this_card_itr "this card" )
If this card fits and is allowed in a number of hands > 0:
Choose one of those hands at random and put this card in that hand.
else (this card is not allowed in any hand that it fits in):
Make a list of suits that can go in hands that are not full. ( suits_allowed_in_non_full )
Make a list of cards of those suits that are in hands that this card is allowed in. ( possible_cards_to_swap )
If that 2nd list is length 0 (There are no cards of suits from the 1st list in the hand that allows the suit of this card):
ASSERT: (I don't have a formal proof for this, but I think it is true.)
There is a 3rd hand that is not involved in the previously used hands in this algorithm.
One hand is full and is the only one that allows this card.
A second hand is the only one not full and doesn't allow this card or any card in the first hand.
The 3rd hand is full and must allow some suit that is in the first hand and must have some suit that is allowed in the second hand.
Choose, at random, a card from the 3rd hand cards of suits that fit in the 2nd hand, and move that card to the 2nd hand.
Choose, at random, a card from the 1st hand cards of suits that fit in the 3rd hand, and move that card to the 3rd hand.
Put "this card" (finally) in the 1st hand.
else:
Choose a card randomly from that list, and move it to a random hand that is not full.
Put "this card" in a hand that allows it.
Next card.
*/
for (auto this_card_itr = unknown_cards_for_player[player_speculating].begin();
this_card_itr != unknown_cards_for_player[player_speculating].end();
++this_card_itr)
{
// intersection of non_full and allow suit
allow_suit_and_non_full.clear();
for (auto allow_itr = hands_that_allow_suit[this_card_itr->get_suit()].begin();
allow_itr != hands_that_allow_suit[this_card_itr->get_suit()].end();
++allow_itr)
{
if (non_full_hands.count(*allow_itr))
allow_suit_and_non_full.push_back(*allow_itr);
}
if (allow_suit_and_non_full.size() > 0)
{
int which_player_to_give_this_card_to = allow_suit_and_non_full[rand() % allow_suit_and_non_full.size()];
speculated_hands[which_player_to_give_this_card_to].insert(*this_card_itr);
if (--space_remaining_in[which_player_to_give_this_card_to] == 0) // decrement space remaining and see if it's full
non_full_hands.erase(which_player_to_give_this_card_to); // now full
}
else // there are no hands left that allow this suit and have space for this card
{
// so we have to do some swapping
// find which suits are allowed in non-full hands
std::unordered_set<int> suits_allowed_in_non_full;
for (auto non_full_itr = non_full_hands.begin(); non_full_itr != non_full_hands.end(); ++non_full_itr)
{
for (int suit = 0; suit < SUIT_COUNT; ++suit)
{
if (hands_that_allow_suit[suit].count(*non_full_itr))
suits_allowed_in_non_full.insert(suit);
}
}
// find possible cards to swap (out of those suits)
std::vector<Card> possible_cards_to_swap;
std::vector<int> which_hand_to_pull_that_card_from;
// go through the hands that "this card" is allowed in
for (auto allow_itr = hands_that_allow_suit[this_card_itr->get_suit()].begin();
allow_itr != hands_that_allow_suit[this_card_itr->get_suit()].end();
++allow_itr)
{
// go through the cards in this hand
for (auto this_card_target_hand_itr = speculated_hands[*allow_itr].begin();
this_card_target_hand_itr != speculated_hands[*allow_itr].end();
++this_card_target_hand_itr)
{
// can this card go in a non-full hand?
if (suits_allowed_in_non_full.count(this_card_target_hand_itr->get_suit()))
{
possible_cards_to_swap.push_back(*this_card_target_hand_itr);
which_hand_to_pull_that_card_from.push_back(*allow_itr);
}
}
}
if (possible_cards_to_swap.size() > 0)
{
// do the swap
int card_index_to_swap = rand() % possible_cards_to_swap.size();
// intersection of non_full and allow swap suit
std::vector<int> allow_swap_suit_and_non_full;
for (auto allow_itr = hands_that_allow_suit[possible_cards_to_swap[card_index_to_swap].get_suit()].begin();
allow_itr != hands_that_allow_suit[possible_cards_to_swap[card_index_to_swap].get_suit()].end();
++allow_itr)
{
if (non_full_hands.count(*allow_itr))
allow_swap_suit_and_non_full.push_back(*allow_itr);
}
// assert allow_swap_suit_and_non_full.size() > 0 // TODO: remove (or set up debugging)
if (allow_swap_suit_and_non_full.size() == 0)
std::cout << "ERROR: assertion fail, single swap, no place to put swap card\n";
int which_player_to_give_this_card_to = allow_swap_suit_and_non_full[rand() % allow_swap_suit_and_non_full.size()];
speculated_hands[which_player_to_give_this_card_to].insert(possible_cards_to_swap[card_index_to_swap]);
speculated_hands[which_hand_to_pull_that_card_from[card_index_to_swap]].erase(possible_cards_to_swap[card_index_to_swap]);
// and this card in the space that was made for it
speculated_hands[which_hand_to_pull_that_card_from[card_index_to_swap]].insert(*this_card_itr);
// only the size of the non-full hand changed
if (--space_remaining_in[which_player_to_give_this_card_to] == 0) // decrement space remaining and see if it's full
non_full_hands.erase(which_player_to_give_this_card_to); // now full
}
else // no single swap possible, double swap is needed
{
// std::cout << "entering double swap scenario\n";
// assert: double swap is possible
/* questionable assertion:
There is a 3rd hand that is not involved in the previously used hands in this algorithm.
One hand is full and is the only one that allows *this_card_itr
A second hand is the only one not full and doesn't allow this card or any card in the first hand.
The 3rd hand is full and must allow some suit that is in the first hand
and must have some suit that is allowed in the second hand. */
int full_and_allows_this_card = *(hands_that_allow_suit[this_card_itr->get_suit()].begin()); // "1st hand"
int non_full_hand = *(non_full_hands.begin()); // "2nd hand" suits_allowed_in_non_full
// which hand is third hand?
int third_hand = 0;
while ((third_hand == full_and_allows_this_card) || // first hand
(third_hand == player_speculating) || // the hand we're not speculating
(third_hand == non_full_hand)) // second hand
{
++third_hand;
}
// debugging assertions // TODO: remove
if (hands_that_allow_suit[this_card_itr->get_suit()].size() != 1)
std::cout << "ERROR: big assertion was wrong, hands that allow this suit != 1\n"; // !
if (non_full_hands.size() != 1)
std::cout << "ERROR: big assertion was wrong, not exactly 1 non-full hand\n";
// go through third hand and find cards allowed in non-full hand
std::vector<Card> second_level_swap_possibilities;
for (auto third_hand_itr = speculated_hands[third_hand].begin();
third_hand_itr != speculated_hands[third_hand].end();
++third_hand_itr)
{
if (suits_allowed_in_non_full.count(third_hand_itr->get_suit()))
second_level_swap_possibilities.push_back(*third_hand_itr);
}
// another of the debugging assertions // TODO: remove
if (second_level_swap_possibilities.size() == 0)
std::cout << "ERROR: big assertion was wrong, no cards to move from 3rd to 2nd\n";
// move one of those cards to the non-full hand
Card second_level_swap = second_level_swap_possibilities[rand() % second_level_swap_possibilities.size()];
speculated_hands[non_full_hand].insert(second_level_swap);
speculated_hands[third_hand].erase(second_level_swap);
// change space remaining
if (--space_remaining_in[non_full_hand] == 0) // decrement space remaining and see if it's full
non_full_hands.erase(non_full_hand); // now full (we're on the last card)
// which suits are allowed in the third hand?
std::unordered_set<int> suits_allowed_in_third_hand;
for (int suit = 0; suit < SUIT_COUNT; ++suit)
{
if (player_seen_void_in_suits[third_hand].count(suit) == 0) // then this suit is allowed
suits_allowed_in_third_hand.insert(suit);
}
// find cards that can be moved from first hand to third hand
// possible_cards_to_swap is already declared from way before and is empty
for (auto first_hand_itr = speculated_hands[full_and_allows_this_card].begin();
first_hand_itr != speculated_hands[full_and_allows_this_card].end();
++first_hand_itr)
{
if (suits_allowed_in_third_hand.count(first_hand_itr->get_suit()))
possible_cards_to_swap.push_back(*first_hand_itr);
}
// another of the debugging assertions // TODO: remove
if (possible_cards_to_swap.size() == 0)
std::cout << "ERROR: big assertion was wrong, no cards to move from 1st to 3rd\n";
// move one of those cards to the third hand
Card first_level_swap = possible_cards_to_swap[rand() % possible_cards_to_swap.size()];
speculated_hands[third_hand].insert(first_level_swap);
speculated_hands[full_and_allows_this_card].erase(first_level_swap);
// so now it's not full and has space for this card
// (it will be full right after inserting this card, so don't change space remaining)
// Now, finally, we can get rid of this card
speculated_hands[full_and_allows_this_card].insert(*this_card_itr);
} // done with double swap
} // done with any swapping
} // next card
// put in the cards that I already knew
speculated_hands[player_speculating] = hands[player_speculating];
for (auto itr = passed_cards_to_player[WHOM_I_PASSED_TO].begin();
itr != passed_cards_to_player[WHOM_I_PASSED_TO].end();
++itr)
{
speculated_hands[WHOM_I_PASSED_TO].insert(*itr);
}
// replace real hands with speculated hands
hands = speculated_hands;
}
Game_Hand::Game_Hand() :
hands(PLAYER_COUNT),
passed_cards_to_player(PLAYER_COUNT),
played_cards(PLAYER_COUNT),
points_played_this_trick(false),
shoot_moon_possible(true),
this_is_simulation(false),
unknown_cards_for_player(PLAYER_COUNT, true)
{
for (int i = 0; i < PLAYER_COUNT; ++i)
{
player_is_human[i] = !i; // player 0 human, rest not
}
}
const std::vector<Card>& Game_Hand::get_played_cards()
{
// std::cout << "get_played_cards: whose_turn = " << whose_turn << std::endl;
// put null cards where cards haven't been played
int player = whose_turn;
for (int handled = played_card_count; handled < PLAYER_COUNT; ++handled)
{
// std::cout << "putting null at " << player << std::endl;
played_cards[player] = Card();
// std::cout << "value there: " << played_cards[player].get_value() << std::endl;
player = (player + 1) % PLAYER_COUNT;
}
return played_cards;
}
void Game_Hand::reset_hand()
{
for (int i = 0; i < PLAYER_COUNT; ++i)
{
hands[i].clear();
unknown_cards_for_player[i].fill();
scores[i] = 0;
passed_cards_to_player[i].clear();
player_seen_void_in_suits[i].clear();
}
pass_count = 0;
hearts_broken = false;
shoot_moon_possible = true;
}
void Game_Hand::deal_hands()
{
Deck deck(true);
Card dealt;
while (! deck.is_empty())
{
for (int i = 0; i < PLAYER_COUNT; ++i)
{
dealt = deck.deal_one(); // TODO: maybe can get rid of this if insert returns an iterator
hands[i].insert(dealt);
unknown_cards_for_player[i].erase(dealt);
if (dealt == STARTING_CARD)
whose_turn = i;
}
}
}
void Game_Hand::pass(const int& from_player, const int& to_player, const std::vector<Card>& passed_cards)
{
//std::cout << "in pass function vector size " << passed_cards.size() << std::endl;
//std::cout << "passed_cards_to_player[to_player].size() " << passed_cards_to_player[to_player].size() << std::endl;
//std::cout << "hands[from_player].size() after passing in pass function " << hands[from_player].size() << std::endl;
for (auto itr = passed_cards.begin(); itr != passed_cards.end(); ++itr)
{
passed_cards_to_player[to_player].push_back(*itr);
hands[from_player].erase(*itr);
}
//std::cout << "passed_cards_to_player[to_player].size() " << passed_cards_to_player[to_player].size() << std::endl;
//std::cout << "hands[from_player].size() after passing in pass function " << hands[from_player].size() << std::endl;
++pass_count;
}
void Game_Hand::receive_passed_cards()
{
for (int i = 0; i < PLAYER_COUNT; ++i)
{
for (auto itr = passed_cards_to_player[i].begin(); itr != passed_cards_to_player[i].end(); ++itr)
{
hands[i].insert(*itr);
unknown_cards_for_player[i].erase(*itr); // remove from unknown cards
if (*itr == STARTING_CARD)
whose_turn = i;
}
}
}
void Game_Hand::reset_trick()
{
played_card_count = 0;
trick_leader = whose_turn;
points_played_this_trick = false;
}
void Game_Hand::play_card(const Card& card)
{
hands[whose_turn].erase(card);
played_cards[whose_turn] = card;
++played_card_count;
if (! points_played_this_trick)
points_played_this_trick = points_for(card);
if (! this_is_simulation)
{
// remove from unknown cards of all players
for (int player = 0; player < PLAYER_COUNT; ++player)
{
unknown_cards_for_player[player].erase(card);
}
// remove from passed cards (AI players remembering what cards they passed)
auto position = std::find(passed_cards_to_player[whose_turn].begin(),
passed_cards_to_player[whose_turn].end(),
card);
if (position != passed_cards_to_player[whose_turn].end())
passed_cards_to_player[whose_turn].erase(position);
// is this player showing that they have none of a suit?
if (card.get_suit() != played_cards[trick_leader].get_suit())
player_seen_void_in_suits[whose_turn].insert(played_cards[trick_leader].get_suit());
// is this player showing that they only have hearts left?
if ((card.get_suit() == HEARTS) &&
(played_card_count == 1) &&
(! hearts_broken))
{
player_seen_void_in_suits[whose_turn].insert(CLUBS);
player_seen_void_in_suits[whose_turn].insert(DIAMONDS);
player_seen_void_in_suits[whose_turn].insert(SPADES);
}
}
if (card.beats_in_suit_of(played_cards[trick_leader]))
trick_leader = whose_turn;
// see if it's still possible to shoot the moon
// TODO: can this be more efficient? this function is high in the profiler
// maybe only check each trick if it's still possible to shoot the moon?
if (shoot_moon_possible)
{
// find out if still possible
if (points_played_this_trick)
{
int player_with_non_zero_score = -1;
for (int player = 0; player < PLAYER_COUNT; ++player)
{
if (scores[player])
{
player_with_non_zero_score = player;
break;
}
}
if (player_with_non_zero_score > -1)
{
// see whether this player has played yet this trick
bool this_player_played = false;
int going_through_turns = (whose_turn + 5 - played_card_count) % PLAYER_COUNT; // first turn this trick
for (int turn_count = played_card_count; turn_count > 0; --turn_count)
{
if (going_through_turns == player_with_non_zero_score)
{
this_player_played = true;
break;
}
going_through_turns = (going_through_turns + 1) % PLAYER_COUNT;
}
if (this_player_played)
{
// this player can't take the trick?
if (player_with_non_zero_score != trick_leader)
{
shoot_moon_possible = false;
// TODO: remove - for testing
if (! this_is_simulation)
std::cout << "this is the point when it becomes impossible for anyone to shoot the moon\n";
}
// he is leading, still possible to shoot the moon
}
// else still possible to shoot the moon
}
// else still possible to shoot the moon
}
// else still possible to shoot the moon
}
if (card.get_suit() == HEARTS)
hearts_broken = true; // TODO: alternate rule, queen of spades breaks hearts
whose_turn = (whose_turn + 1) % PLAYER_COUNT;
}
void Game_Hand::end_trick()
{
for (auto card_itr = played_cards.begin(); card_itr != played_cards.end(); ++card_itr)
{
scores[trick_leader] += points_for(*card_itr);
}
whose_turn = trick_leader;
// TODO: history of tricks?
}
int Game_Hand::end_hand()
{
/** @returns who shot the moon, -1 if no one shot the moon */
// shoot the moon points
for (int win_player = 0; win_player < PLAYER_COUNT; ++win_player) // check if player got 26
{
if (scores[win_player] == 26) // this player shot the moon
{
scores[win_player] = 0;
for (int other_player = 0; other_player < PLAYER_COUNT; ++other_player)
{
if (other_player != win_player)
scores[other_player] = 26;
}
return win_player;
}
else if (scores[win_player] > 0) // 1 to 25 points
return -1; // no one shot the moon
}
std::cerr << "invalid scores at the end of a hand\n";
return -2;
}
void Game_Hand::find_valid_choices(std::vector<Card>& valid_choices) const
{
/*
Much of this code is copied to find_valid_choice_rule.
Keep the two functions in sync.
O(n) for a function that will be called millions of times per game
efficiency is important
I made this chart trying to work out the best organization
key:
lead - I am first player of trick
first - first trick of the hand
hb - hearts already broken
l - whether I have suit matching lead suit matters
h - whether I have non-hearts matters
p - whether I have non-points matters
- - nothing matters
2c - two of clubs
3-dimensional table
lead y lead no
first y -(2c) l p
hb n h l
hb y - l
list
T(n) (if going through cards to see what matters, then going through to get valid cards)
lead y first y hb y - 0 (impossible)
lead y first y hb n - 1 (2c)
lead y first n hb y - n
lead y first n hb n h 2n
lead n first y hb y - 0 (impossible)
lead n first y hb n l p 2n if l then p done (l can stop first itr, p can't)
lead n first n hb y l 2n
lead n first n hb n l 2n
(but not iterating twice because have sets of suits)
lead n happens 3 times as often as lead y
first n happens thousands of times more often than first y
hb is probably about equal y and n
*/
// this might look long and messy, but I think it's the most efficient
// here we go...
if (hands[whose_turn].size() == 13) // first trick
{
if (played_card_count == 0) // first player
{
valid_choices.push_back(STARTING_CARD); // two of clubs
return; // nothing else
}
// not first player
if (hands[whose_turn].count(CLUBS)) // must match lead suit (clubs)
{
for (auto itr = hands[whose_turn].suit_begin(CLUBS); itr != hands[whose_turn].suit_end(CLUBS); ++itr)
{
valid_choices.push_back(*itr);
}
}
else // don't have any to match lead suit
{
if (hands[whose_turn].contains_non_points()) // have non-points
{
for (auto itr = hands[whose_turn].begin(); itr != hands[whose_turn].end(); ++itr) // play any non-points
{
if (! points_for(*itr))
{
valid_choices.push_back(*itr);
}
}
}
else // no non-points (no match for lead suit)
{
for (auto itr = hands[whose_turn].begin(); itr != hands[whose_turn].end(); ++itr) // play anything
{
valid_choices.push_back(*itr);
}
}
}
}
else // not first trick
{
if (played_card_count == 0) // first player
{
if (hearts_broken) // hearts broken
{
for (auto itr = hands[whose_turn].begin(); itr != hands[whose_turn].end(); ++itr) // play anything
{
valid_choices.push_back(*itr);
}
}
else // hearts not broken
{
if (hands[whose_turn].count(HEARTS) == hands[whose_turn].size()) // only hearts in hand
{
for (auto itr = hands[whose_turn].suit_begin(HEARTS); itr != hands[whose_turn].suit_end(HEARTS); ++itr) // play anything (hearts)
{
valid_choices.push_back(*itr);
}
}
else // non-hearts in hand, hearts not allowed
{
// anything from 3 other suits
for (auto itr = hands[whose_turn].suit_begin(CLUBS); itr != hands[whose_turn].suit_end(CLUBS); ++itr)
{
valid_choices.push_back(*itr);
}
for (auto itr = hands[whose_turn].suit_begin(DIAMONDS); itr != hands[whose_turn].suit_end(DIAMONDS); ++itr)
{
valid_choices.push_back(*itr);
}
for (auto itr = hands[whose_turn].suit_begin(SPADES); itr != hands[whose_turn].suit_end(SPADES); ++itr)
{
valid_choices.push_back(*itr);
}
// TODO: this is the only time in this function that we get something from more than one suit
// without iterating over the entire hand
// it may be useful to have the vector in the same order as iterating over the entire hand
// so this may need to change to iterate over the entire hand (since the order of suits can change)
// TODO: yes, this will cause a problem if the order of suits is changed
// valid_choices needs to be in the same order as iterating through the hand
}
}
}
else // not first player (and not first trick)
{
if (hands[whose_turn].count(played_cards[trick_leader].get_suit())) // must match lead suit
{
for (auto itr = hands[whose_turn].suit_begin(played_cards[trick_leader].get_suit());
itr != hands[whose_turn].suit_end (played_cards[trick_leader].get_suit());
++itr)
{
valid_choices.push_back(*itr);
}
}
else // don't have matching suit
{
for (auto itr = hands[whose_turn].begin(); itr != hands[whose_turn].end(); ++itr) // play anything
{
valid_choices.push_back(*itr);
}
}
}
}
}
void Game_Hand::find_valid_choice_rule(std::string& rule) const
{
/*
Much of this code is copied from find_valid_choices.
Keep the two functions in sync.
It is put in two different places for efficiency.
find_valid_choices is called millions of times per game,
so I don't want to put more in it than has to be in it.
*/
const std::string FOLLOW_SUIT_RULE("You must play the same suit that was led."); // because it's used more than once
if (hands[whose_turn].size() == 13) // first trick
{
if (played_card_count == 0) // first player
{
rule = "The " + STARTING_CARD.str() + " must be played first."; // two of clubs
return; // nothing else
}
// not first player
if (hands[whose_turn].count(CLUBS)) // must match lead suit (clubs)
{
rule = FOLLOW_SUIT_RULE;
}
else // don't have any to match lead suit
{
if (hands[whose_turn].contains_non_points()) // have non-points
{
rule = "Points are not allowed on the first trick.";
}
else // no non-points (no match for lead suit)
{
// play anything
}
}
}
else // not first trick
{
if (played_card_count == 0) // first player
{
if (hearts_broken) // hearts broken
{
// play anything
}
else // hearts not broken
{
if (hands[whose_turn].count(HEARTS) == hands[whose_turn].size()) // only hearts in hand
{
// play anything
}
else // non-hearts in hand, hearts not allowed
{
// anything from 3 other suits
rule = "Hearts may not be led until they have been played.";
}
}
}
else // not first player (and not first trick)
{
if (hands[whose_turn].count(played_cards[trick_leader].get_suit())) // must match lead suit
{
rule = FOLLOW_SUIT_RULE;
}
else // don't have matching suit
{
// play anything
}
}
}
}
Card Game_Hand::static_play_ai() const
{
/** this will not work with alternative scoring rules involving other cards (jack of diamonds)
it could crash */
std::vector<Card> valid_choices;
find_valid_choices(valid_choices);
if (played_card_count > 0) // I'm not leading the trick
{
if (valid_choices[0].get_suit() == played_cards[trick_leader].get_suit()) // I have to follow suit
{
if (valid_choices[0].get_value() < played_cards[trick_leader].get_value()) // I can play under, avoid taking it
{
// find highest card I can avoid taking it with
for (int i = valid_choices.size() - 1; i >= 0; --i)
{
if (valid_choices[i].get_value() < played_cards[trick_leader].get_value()) // this is highest card I can avoid taking it with
{
// Q of Spades instead of K of Spades
if (valid_choices[i].get_value() == 13 && // King
valid_choices[i].get_suit() == SPADES && // of Spades
i > 0 && // I have a lower Spade
valid_choices[i-1].get_value() == 12) // and it's the Queen
{
return valid_choices[i-1]; // play Queen of Spades
}
else // not king and queen of spades
{
return valid_choices[i]; // highest card I can avoid taking it with
}
}
}
}
else // I can't play under
{
if (played_card_count < 3) // someone else will play after me
{
if (played_cards[trick_leader].get_suit() == SPADES) // spades
{
if (valid_choices[0].get_value() == 12 && // queen
valid_choices.size() > 1) // and I have something else // TODO: is this code ever run with size == 1?
{
return valid_choices[1];
}
else // not queen or I don't have anything else
{
return valid_choices[0];
}
}
else // not spades
{
return valid_choices[0]; // lowest card
}
}
else // no one else plays after me
{
if (played_cards[trick_leader].get_suit() == SPADES) // spades
{
if (valid_choices[valid_choices.size() - 1].get_value() == 12 && // queen
valid_choices.size() > 1) // and I have something else // TODO: is this code ever run with size == 1?
{
return valid_choices[valid_choices.size() - 2]; // highest except queen
}
else // not queen or I don't have anything else
{
return valid_choices[valid_choices.size() - 1]; // highest
}
}
else // not spades
{
return valid_choices[valid_choices.size() - 1]; // highest card
}
}
}
}
else // don't have to follow suit (and not leading)
{
// GET RID OF THE QUEEN!!
// (play lowest of high spades)
std::vector<Card> high_spades; // ordered from highest to lowest
for (int i = valid_choices.size() - 1; i >= 0; --i)
{
if (valid_choices[i].get_suit() != SPADES)
continue;
if (valid_choices[i].get_value() > 11) // higher than Jack
high_spades.push_back(valid_choices[i]);
else // spade, lower than queen
break;
}
if (high_spades.size() > 0) // I have high spades
{
return high_spades[high_spades.size() - 1]; // play lowest high spade
}
else // I don't have any high spades
{
// play the highest card in the suit of the highest lowest card of its suit
// (yes, you understood that)
// algorithm:
// look at the lowest card in each suit
// which one of those is the highest?
// what's the suit of that card?
// play the highest card in that suit
Suit suit_currently_looking_through = valid_choices[0].get_suit();
Suit suit_of_the_highest_lowest_card_of_its_suit = valid_choices[0].get_suit();
int lowest_value_in_that_suit = valid_choices[0].get_value();
for (unsigned int i = 1; i < valid_choices.size(); ++i)
{
if (valid_choices[i].get_suit() != suit_currently_looking_through) // moved into a new suit
{
suit_currently_looking_through = valid_choices[i].get_suit();
if (valid_choices[i].get_value() /* lowest value in this suit */ >
lowest_value_in_that_suit) // found one higher
{
suit_of_the_highest_lowest_card_of_its_suit = suit_currently_looking_through;
lowest_value_in_that_suit = valid_choices[i].get_value();
}
}
}
// now we know the suit of the highest lowest card of its suit
// since we don't have any high spades, any card of this suit should be a valid choice
// so we can pull it out of the hand (instead of the valid_choices)
auto set_itr = hands[whose_turn].suit_rbegin(suit_of_the_highest_lowest_card_of_its_suit);
return *set_itr;
}
}
}
else // I lead
{
bool found_non_high_spade = false;
for (unsigned int i = 0; i < valid_choices.size(); ++i)
{
if (valid_choices[i].get_value() < 12 || valid_choices[i].get_suit() != SPADES) // found non "high spade"
{
found_non_high_spade = true;
break;
}
}
if (! found_non_high_spade) // only high spades available
return valid_choices[0]; // play lowest high spade
// random, but not high spade
int size_after_high_spades_swapped_out = valid_choices.size();
int random_choice;
while (true)
{
random_choice = rand() % size_after_high_spades_swapped_out;
if (valid_choices[random_choice].get_value() > 11 && valid_choices[random_choice].get_suit() == SPADES) // high spade
{
// swap high spade into last spot
--size_after_high_spades_swapped_out;
std::swap(valid_choices[random_choice], valid_choices[size_after_high_spades_swapped_out]);
continue;
}
else // not high spade
return valid_choices[random_choice];
}
}
return Card(); // just to avoid warning message about control reaching end of non-void function
/* this strategy in Python:
if must_choose_trick_suit: # I'm not leading the trick
# see if I can avoid taking it
can_avoid_taking_it = False
for index in valid_choices:
if self.players_hands[self.turn][index] < self.played_cards[self.taker()]:
can_avoid_taking_it = True
try: # might be first one can avoid taking it with
if self.players_hands[self.turn][can_avoid_taking_it_with].value != 12 or \
self.players_hands[self.turn][can_avoid_taking_it_with].suit != SUITS[2]:
# don't change to king of spades if it's queen of spades
can_avoid_taking_it_with = index
except NameError: # first one
can_avoid_taking_it_with = index # after for loop, will be the highest because sorted
if can_avoid_taking_it:
answer = can_avoid_taking_it_with
else: # can't avoid taking it, unless...
if self.played_cards.count(None) > 1: # someone else will play after me
if self.trick_suit != SUITS[2]: # not spades
answer = valid_choices[0] # lowest
else: # is spades
if self.players_hands[self.turn][valid_choices[0]].value == 12 and \
self.players_hands[self.turn][valid_choices[0]].suit == SUITS[2]: # Q of S
answer = valid_choices[1] # second lowest
else: # lowest is not Queen of Spades
answer = valid_choices[0] # play lowest
else: # can't avoid taking it, no one else plays after me
if self.trick_suit != SUITS[2]: # not spades
answer = valid_choices[-1] # highest
else: # is spades
if self.players_hands[self.turn][valid_choices[-1]].value == 12 and \
self.players_hands[self.turn][valid_choices[-1]].suit == SUITS[2]: # Q of S
answer = valid_choices[-2] # second highest
else: # highest is not Queen of Spades
answer = valid_choices[-1]
else: # I don't have to follow suit
if self.played_cards.count(None) == 4: # I'm leading
only_high_spades_available = True
valid_choices_minus_high_spades = []
for index in valid_choices:
if self.players_hands[self.turn][index].suit != SUITS[2] or \
self.players_hands[self.turn][index].value not in [12, 13, 1]:
only_high_spades_available = False
valid_choices_minus_high_spades.append(index)
if only_high_spades_available:
answer = valid_choices[0] # lowest high spade
else: # valid choices are not all high spades todo: maybe something better here?
answer = random.choice(valid_choices_minus_high_spades)
else: # not leading, don't have to follow suit, not taking it
# GET RID OF THE QUEEN!!!
i_have_high_spades = False
high_spades_choices = []
for index in valid_choices:
if self.players_hands[self.turn][index].suit == SUITS[2] and \
self.players_hands[self.turn][index].value in [12, 13, 1]:
i_have_high_spades = True
high_spades_choices.append(index)
if i_have_high_spades:
answer = high_spades_choices[0] # lowest of the high spades
else: # I don't have high spades
suit_where_my_lowest_card_is_the_highest = self.players_hands[self.turn][valid_choices[0]].suit
lowest_in_suit = valid_choices[0]
highest_in_suit = valid_choices[0]
current_suit_going_through = suit_where_my_lowest_card_is_the_highest
# todo: check this part v
for index in valid_choices:
if self.players_hands[self.turn][index].suit != current_suit_going_through:
current_suit_going_through = self.players_hands[self.turn][index].suit
# this will be the lowest card in this new suit:
if not (self.players_hands[self.turn][index] < # not < in place of >= because overloading
self.players_hands[self.turn][lowest_in_suit]):
suit_where_my_lowest_card_is_the_highest = self.players_hands[self.turn][index].suit
lowest_in_suit = index
highest_in_suit = index
else: # still in same suit
if current_suit_going_through == suit_where_my_lowest_card_is_the_highest:
if self.players_hands[self.turn][index] > \
self.players_hands[self.turn][highest_in_suit]:
highest_in_suit = index
answer = highest_in_suit