Skip to content

Latest commit

 

History

History
10 lines (9 loc) · 2.44 KB

README.md

File metadata and controls

10 lines (9 loc) · 2.44 KB

These are seminar materials for the Geometric Methods in Machine Learning course (Spring 2024) by Prof. A.V. Bernstein at Sk. Materials were prepared by Oleg Kachan.

Seminar notebook Theme(s)
Sem1 Principal Component Analysis (PCA)
Sem2 Independent Component Analysis (ICA)
Sem3 Intrinsic dimension estimation
Based on paper: Levina, Bickel (2004), Maximum Likelihood Estimation of Intrinsic Dimension
Sem4 Nonlinear Dimensionality Reduction
1) Kernel PCA: Gaussian, polynomial, cosine, graph kernels
2) Metric Multidimensional Scaling (MDS)
3) Isomap
4) Locally Linear Embeddings (LLE)
5) Laplacian Eigenmaps (LE)
6) Local Tangent Space Alignment (LTSA)
7) non-Euclidean distance mods: p-Wasserstein
Sem5 Topological Data Analysis (TDA)
1) Simplicial homology, Betti numbers
2) Persistent diagrams, Wasserstein distance on them and stability
3) Persistent homology (PH) of graphs
4) Vectorization of topological features: Persistent images, Betti curves
5) Persistent homology of digital images (Obayashi, Hiraoka – https://arxiv.org/abs/1706.10082)
6) Deep sets (Zaheer, Kottur, Ravanbakhsh, Poczos, Salakhutdinov, Smola – https://arxiv.org/abs/1703.06114)