-
Notifications
You must be signed in to change notification settings - Fork 0
/
SCML_local.m
51 lines (41 loc) · 1.51 KB
/
SCML_local.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% Copyright 2014 Yuan Shi & Aurelien Bellet
%
% This file is part of SCML.
%
% SCML is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% SCML is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with SCML. If not, see <http://www.gnu.org/licenses/>.
function [A, b, B] = SCML_local(xTr, yTr, zTr, numBasis, beta, b_init)
% SCML-Local
% xTr: N*D data matrix. Each row is a data point
% yTr: N*1 label vector.
% zTr: N*d embedding matrix. Each row is a kernel PCA embedding of the
% corresponding training point
% numBasis: num of basis elements
% beta: regularization parameter
% b_init: initialization for b (optional)
%
% A, b: parameters of local metrics
% B: basis set
% generate triplets
T = generate_knntriplets(xTr, yTr, 3, 10);
% generate bases and initialize A and b
B = generate_bases_LDA(xTr, yTr, numBasis);
A = zeros( size(zTr,2), numBasis );
if isempty(b_init)
b_init = ones(1, numBasis);
end
b = sqrt(b_init');
b = b + 0.001; % add a small value
% learning A
[A b] = learning_A_stoch_2_1_proximal(A, b, B, xTr, zTr, T, beta);
b = b';