-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathwaves_2d_comparison.py
424 lines (342 loc) · 21.6 KB
/
waves_2d_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from grpc import method_handlers_generic_handler
import pygame
import numpy as np
import random
import math
import time
hs = 1 # spatial step width
ts = 1 # time step width
dimx = 200 # width of the simulation domain
dimy = 200 # height of the simulation domain
cellsize = 2 # display size of a cell in pixel
laplace = np.zeros((7, 7))
def create_arrays():
global velocity
global tau
global kappa
global gauss_peak
global u
global u1
global u2
global u3
# The three dimensional simulation grid
u = np.zeros((3, dimx, dimy))
# A second grid for comparing simulation results with another method
u1 = np.zeros((3, dimx, dimy))
u2 = np.zeros((3, dimx, dimy))
u3 = np.zeros((3, dimx, dimy))
# A field containing the velocity for each cell
velocity = np.zeros((dimx, dimy))
# A field containing the factor for the Laplace Operator that combines Velocity and Grid Constants for the Wave Equation
tau = np.zeros((dimx, dimy))
# A field containing the factor for the Laplace Operator that combines Velocity and Grid Constants for the Boundary Condition
kappa = np.zeros((dimx, dimy))
# Create a template for a gauss peak to use as a rain drop model
sz = 10
sigma = 1.4
xx, yy = np.meshgrid(range(-sz, sz), range(-sz, sz))
gauss_peak = np.zeros((sz, sz))
gauss_peak = 300 / (sigma*2*math.pi) * (math.sqrt(2*math.pi)) * np.exp(- 0.5 * ((xx**2+yy**2)/(sigma**2)))
def set_initial_conditions(u):
global velocity
global tau
global kappa
global gauss_peak
velocity[0:dimx,0:dimy] = 0.3 # 0.39 m/s Wave velocity of shallow water waves (lambda 0.1, depth 0.1)
velocity[110:150,50:dimy-50] = 0.2 # will be set to a constant value of tau
velocity[150:200,50:dimy-50] = 0.1 # will be set to a constant value of tau
velocity[0:dimx, 150:] = 0.4 # will be set to a constant value of tau
# compute tau and kappa from the velocity field
tau = ( (velocity*ts) / hs )**2
kappa = ts * velocity / hs
# Place a single gaussian peak at the center of the simulation
put_gauss_peak(u, int(dimx/2), int(dimy/2), 10)
def put_gauss_peak(u, x : int, y : int, height):
"""Place a gauss shaped peak into the simulation domain.
This function will put a gauss shaped peak at position x,y
of the simulation domain.
"""
w,h = gauss_peak.shape
w = int(w/2)
h = int(h/2)
use_multipole = False
if use_multipole:
# Multipole
dist = 3
u[0:2, x-w-dist:x+w-dist, y-h:y+h] += height * gauss_peak
u[0:2, x-w:x+w, y-h+dist:y+h+dist] -= height * gauss_peak
u[0:2, x-w+dist:x+w+dist, y-h:y+h] += height * gauss_peak
u[0:2, x-w:x+w, y-h-dist:y+h-dist] -= height * gauss_peak
else:
# simple peak
u[0:2, x-w:x+w, y-h:y+h] += height * gauss_peak
def update(u : any, method : int):
u[2] = u[1]
u[1] = u[0]
method_name = ''
if method==0:
boundary_size = 1
method_name = 'Spatial deriv. Acc.: O(h^2)'
# This is the second order scheme you will most commonly see. It does not take diagonaly into account.
# Some waves may appear a tiny bit edgy.
u[0, 1:dimx-1, 1:dimy-1] = tau[1:dimx-1, 1:dimy-1] \
* ( u[1, 1:dimx-1, 0:dimy-2] # c, r-1 => 1
+ u[1, 0:dimx-2, 1:dimy-1] # c-1, r => 1
- 4 * u[1, 1:dimx-1, 1:dimy-1] # c, r => -4
+ u[1, 2:dimx , 1:dimy-1] # c+1, r => 1
+ u[1, 1:dimx-1, 2:dimy] # c, r+1 => 1
) \
+ 2 * u[1, 1:dimx-1, 1:dimy-1] \
- u[2, 1:dimx-1, 1:dimy-1]
elif method==1:
boundary_size = 1
method_name = 'Spatial deriv. Acc.: O(h^2)'
# This is the second order scheme with a laplacian that takes the diagonals into account.
# The resulting wave shape will look a bit better under certain conditions but the accuracy
# is still low. In most cases you will hardly see a difference to #1
u[0, 1:dimx-1, 1:dimy-1] = tau[1:dimx-1, 1:dimy-1] \
* ( 0.25 * u[1, 0:dimx-2, 0:dimy-2] # c-1, r-1 => 1
+ 0.5 * u[1, 1:dimx-1, 0:dimy-2] # c, r-1 => 1
+ 0.25 * u[1, 2:dimx , 0:dimy-2] # c+1, r-1 => 1
+ 0.5 * u[1, 0:dimx-2, 1:dimy-1] # c-1, r => 1
- 3 * u[1, 1:dimx-1, 1:dimy-1] # c, r => -8
+ 0.5 * u[1, 2:dimx , 1:dimy-1] # c+1, r => 1
+ 0.25 * u[1, 0:dimx-2, 2:dimy] # c-1, r+1 => 1
+ 0.5 * u[1, 1:dimx-1, 2:dimy] # c, r+1 => 1
+ 0.25 * u[1, 2:dimx , 2:dimy] # c+1, r+1 => 1
) \
+ 2 * u[1, 1:dimx-1, 1:dimy-1] \
- u[2, 1:dimx-1, 1:dimy-1]
elif method==2: # ok, (4)th Order https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf; Page 702
boundary_size = 2
method_name = 'Spatial deriv. Acc.: O(h^4)'
u[0, 2:dimx-2, 2:dimy-2] = tau[2:dimx-2, 2:dimy-2]\
* ( - 1 * u[1, 2:dimx-2, 0:dimy-4] # c , r-2 => -1
+ 16 * u[1, 2:dimx-2, 1:dimy-3] # c , r-1 => 16
- 1 * u[1, 0:dimx-4, 2:dimy-2] # c - 2, r => -1
+ 16 * u[1, 1:dimx-3, 2:dimy-2] # c - 1, r => 16
- 60 * u[1, 2:dimx-2, 2:dimy-2] # c , r => -60
+ 16 * u[1, 3:dimx-1, 2:dimy-2] # c+1 , r => 16
- 1 * u[1, 4:dimx, 2:dimy-2] # c+2 , r => -1
+ 16 * u[1, 2:dimx-2, 3:dimy-1] # c , r+1 => 16
- 1 * u[1, 2:dimx-2, 4:dimy] # c , r+2 => -1
) / 12 \
+ 2*u[1, 2:dimx-2, 2:dimy-2] \
- u[2, 2:dimx-2, 2:dimy-2]
elif method==3: # ok, (6th) https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf; Page 702
boundary_size = 3
method_name = 'Spatial deriv. Acc.: O(h^6)'
u[0, 3:dimx-3, 3:dimy-3] = tau[3:dimx-3, 3:dimy-3]\
* ( 2 * u[1, 3:dimx-3, 0:dimy-6] # c, r-3
- 27 * u[1, 3:dimx-3, 1:dimy-5] # c, r-2
+ 270 * u[1, 3:dimx-3, 2:dimy-4] # c, r-1
+ 2 * u[1, 0:dimx-6, 3:dimy-3] # c - 3, r
- 27 * u[1, 1:dimx-5, 3:dimy-3] # c - 2, r
+ 270 * u[1, 2:dimx-4, 3:dimy-3] # c - 1, r
- 980 * u[1, 3:dimx-3, 3:dimy-3] # c , r
+ 270 * u[1, 4:dimx-2, 3:dimy-3] # c + 1, r
- 27 * u[1, 5:dimx-1, 3:dimy-3] # c + 2, r
+ 2 * u[1, 6:dimx, 3:dimy-3] # c + 3, r
+ 270 * u[1, 3:dimx-3, 4:dimy-2] # c , r+1
- 27 * u[1, 3:dimx-3, 5:dimy-1] # c , r+2
+ 2 * u[1, 3:dimx-3, 6:dimy ] # c , r+3
) / 180 \
+ 2*u[1, 3:dimx-3, 3:dimy-3] \
- u[2, 3:dimx-3, 3:dimy-3]
elif method==4: # ok, (8th) https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf; Page 702
boundary_size = 4
method_name = 'Spatial deriv. Acc.: O(h^8)'
u[0, 4:dimx-4, 4:dimy-4] = tau[4:dimx-4, 4:dimy-4]\
* ( - 1/560 * u[1, 4:dimx-4, 0:dimy-8] # c, r-4
+ 8/315 * u[1, 4:dimx-4, 1:dimy-7] # c, r-3
- 1/5 * u[1, 4:dimx-4, 2:dimy-6] # c, r-2
+ 8/5 * u[1, 4:dimx-4, 3:dimy-5] # c, r-1
- 1/560 * u[1, 0:dimx-8, 4:dimy-4] # c - 4, r
+ 8/315 * u[1, 1:dimx-7, 4:dimy-4] # c - 3, r
- 1/5 * u[1, 2:dimx-6, 4:dimy-4] # c - 2, r
+ 8/5 * u[1, 3:dimx-5, 4:dimy-4] # c - 1, r
- 410/72 * u[1, 4:dimx-4, 4:dimy-4] # c , r
+ 8/5 * u[1, 5:dimx-3, 4:dimy-4] # c + 1, r
- 1/5 * u[1, 6:dimx-2, 4:dimy-4] # c + 2, r
+ 8/315 * u[1, 7:dimx-1, 4:dimy-4] # c + 3, r
- 1/560 * u[1, 8:dimx , 4:dimy-4] # c + 4, r
+ 8/5 * u[1, 4:dimx-4, 5:dimy-3] # c , r+1
- 1/5 * u[1, 4:dimx-4, 6:dimy-2] # c , r+2
+ 8/315 * u[1, 4:dimx-4, 7:dimy-1] # c , r+3
- 1/560 * u[1, 4:dimx-4, 8:dimy ] # c , r+4
) \
+ 2*u[1, 4:dimx-4, 4:dimy-4] \
- u[2, 4:dimx-4, 4:dimy-4]
elif method==5: # generalized code for the laplace operator
method_name = '...'
# ok
# laplace[0, :] = (0, 0, 0, 0, 0, 0, 0)
# laplace[1, :] = (0, 0, 0, 0, 0, 0, 0)
# laplace[2, :] = (0, 0, 0.25, 0.5, 0.25, 0, 0)
# laplace[3, :] = (0, 0, 0.50, -3, 0.50, 0, 0)
# laplace[4, :] = (0, 0, 0.25, 0.5, 0.25, 0, 0)
# laplace[5, :] = (0, 0, 0, 0, 0, 0, 0)
# laplace[6, :] = (0, 0, 0, 0, 0, 0, 0)
# laplace[0, :] = ( 0, 0, 0, 0, 0, 0, 0)
# laplace[1, :] = ( 0, 0, 0, -1, 0, 0, 0)
# laplace[2, :] = ( 0, 0, 0, 16, 0, 0, 0)
# laplace[3, :] = ( 0, -1, 16, -60, 16, -1, 0)
# laplace[4, :] = ( 0, 0, 0, 16, 0, 0, 0)
# laplace[5, :] = ( 0, 0, 0, -1, 0, 0, 0)
# laplace[6, :] = ( 0, 0, 0, 0, 0, 0, 0)
# laplace[:,:] /= 12
laplace[0, :] = ( 0, 0, 0, 2, 0, 0, 0)
laplace[1, :] = ( 0, 0, 0, -27, 0, 0, 0)
laplace[2, :] = ( 0, 0, 0, 270, 0, 0, 0)
laplace[3, :] = ( 2, -27, 270, -980, 270, -27, 2)
laplace[4, :] = ( 0, 0, 0, 270, 0, 0, 0)
laplace[5, :] = ( 0, 0, 0, -27, 0, 0, 0)
laplace[6, :] = ( 0, 0, 0, 2, 0, 0, 0)
laplace[:,:] /= 180
boundary_size = 3
u[0, 3:dimx-3, 3:dimy-3] = tau[3:dimx-3, 3:dimy-3]\
* ( laplace[0, 0] * u[1, 0:dimx-6, 0:dimy-6] # c-3, r-3
+ laplace[1, 0] * u[1, 1:dimx-5, 0:dimy-6] # c-2, r-3
+ laplace[2, 0] * u[1, 2:dimx-4, 0:dimy-6]
+ laplace[3, 0] * u[1, 3:dimx-3, 0:dimy-6] # c, r-3
+ laplace[4, 0] * u[1, 4:dimx-2, 0:dimy-6]
+ laplace[5, 0] * u[1, 5:dimx-1, 0:dimy-6]
+ laplace[6, 0] * u[1, 6:dimx-0, 0:dimy-6]
+ laplace[0, 1] * u[1, 0:dimx-6, 1:dimy-5]
+ laplace[1, 1] * u[1, 1:dimx-5, 1:dimy-5]
+ laplace[2, 1] * u[1, 2:dimx-4, 1:dimy-5]
+ laplace[3, 1] * u[1, 3:dimx-3, 1:dimy-5] # c, r-2
+ laplace[4, 1] * u[1, 4:dimx-2, 1:dimy-5]
+ laplace[5, 1] * u[1, 5:dimx-1, 1:dimy-5]
+ laplace[6, 1] * u[1, 6:dimx-0, 1:dimy-5]
+ laplace[0, 2] * u[1, 0:dimx-6, 2:dimy-4]
+ laplace[1, 2] * u[1, 1:dimx-5, 2:dimy-4]
+ laplace[2, 2] * u[1, 2:dimx-4, 2:dimy-4]
+ laplace[3, 2] * u[1, 3:dimx-3, 2:dimy-4] # c, r-1
+ laplace[4, 2] * u[1, 4:dimx-2, 2:dimy-4]
+ laplace[5, 2] * u[1, 5:dimx-1, 2:dimy-4]
+ laplace[6, 2] * u[1, 6:dimx-0, 2:dimy-4]
+ laplace[0, 3] * u[1, 0:dimx-6, 3:dimy-3] # c - 2, r
+ laplace[1, 3] * u[1, 1:dimx-5, 3:dimy-3] # c - 1, r
+ laplace[2, 3] * u[1, 2:dimx-4, 3:dimy-3] # c , r
+ laplace[3, 3] * u[1, 3:dimx-3, 3:dimy-3] # c + 1, r
+ laplace[4, 3] * u[1, 4:dimx-2, 3:dimy-3] # c + 2, r
+ laplace[5, 3] * u[1, 5:dimx-1, 3:dimy-3]
+ laplace[6, 3] * u[1, 6:dimx-0, 3:dimy-3]
+ laplace[0, 4] * u[1, 0:dimx-6, 4:dimy-2]
+ laplace[1, 4] * u[1, 1:dimx-5, 4:dimy-2]
+ laplace[2, 4] * u[1, 2:dimx-4, 4:dimy-2] # c , r+1
+ laplace[3, 4] * u[1, 3:dimx-3, 4:dimy-2]
+ laplace[4, 4] * u[1, 4:dimx-2, 4:dimy-2]
+ laplace[5, 4] * u[1, 5:dimx-1, 4:dimy-2]
+ laplace[6, 4] * u[1, 6:dimx-0, 4:dimy-2]
+ laplace[0, 5] * u[1, 0:dimx-6, 5:dimy-1]
+ laplace[1, 5] * u[1, 1:dimx-5, 5:dimy-1]
+ laplace[2, 5] * u[1, 2:dimx-4, 5:dimy-1]
+ laplace[3, 5] * u[1, 3:dimx-3, 5:dimy-1] # c , r+2
+ laplace[4, 5] * u[1, 4:dimx-2, 5:dimy-1]
+ laplace[5, 5] * u[1, 5:dimx-1, 5:dimy-1]
+ laplace[6, 5] * u[1, 6:dimx-0, 5:dimy-1]
+ laplace[0, 6] * u[1, 0:dimx-6, 6:dimy]
+ laplace[1, 6] * u[1, 1:dimx-5, 6:dimy]
+ laplace[2, 6] * u[1, 2:dimx-4, 6:dimy]
+ laplace[3, 6] * u[1, 3:dimx-3, 6:dimy] # c , r+3
+ laplace[4, 6] * u[1, 4:dimx-2, 6:dimy]
+ laplace[5, 6] * u[1, 5:dimx-1, 6:dimy]
+ laplace[6, 6] * u[1, 6:dimx-0, 6:dimy]
) \
+ 2*u[1, 3:dimx-3, 3:dimy-3] \
- u[2, 3:dimx-3, 3:dimy-3]
# Absorbing Boundary Conditions:
mur = True
if mur==True:
update_boundary(u, boundary_size)
return method_name
def update_boundary(u, sz) -> None:
"""Update the boundary cells.
Implement MUR boundary conditions. This represents an open boundary were waves can leave the
simulation domain with little remaining reflection artifacts. Although this is of a low error
order it is good enough for this simulation.
"""
c = dimx-1
u[0, dimx-sz-1:c, 1:dimy-1] = u[1, dimx-sz-2:c-1, 1:dimy-1] + (kappa[dimx-sz-1:c, 1:dimy-1]-1)/(kappa[ dimx-sz-1:c, 1:dimy-1]+1) * (u[0, dimx-sz-2:c-1,1:dimy-1] - u[1, dimx-sz-1:c,1:dimy-1])
c = 0
u[0, c:sz, 1:dimy-1] = u[1, c+1:sz+1, 1:dimy-1] + (kappa[c:sz, 1:dimy-1]-1)/(kappa[c:sz, 1:dimy-1]+1) * (u[0, c+1:sz+1,1:dimy-1] - u[1,c:sz,1:dimy-1])
r = dimy-1
u[0, 1:dimx-1, dimy-1-sz:r] = u[1, 1:dimx-1, dimy-2-sz:r-1] + (kappa[1:dimx-1, dimy-1-sz:r]-1)/(kappa[1:dimx-1, dimy-1-sz:r]+1) * (u[0, 1:dimx-1, dimy-2-sz:r-1] - u[1, 1:dimx-1, dimy-1-sz:r])
r = 0
u[0, 1:dimx-1, r:sz] = u[1, 1:dimx-1, r+1:sz+1] + (kappa[1:dimx-1, r:sz]-1)/(kappa[1:dimx-1, r:sz]+1) * (u[0, 1:dimx-1, r+1:sz+1] - u[1, 1:dimx-1, r:sz])
def place_raindrops(u, u1, u2, u3, tick):
if (random.random()<0.003):
w,h = gauss_peak.shape
x = int(random.randrange(w+w/2, dimx-h-h/2))
y = int(random.randrange(w+w/2, dimy-h-h/2))
height = 2
put_gauss_peak(u, x, y, height)
put_gauss_peak(u1, x, y, height)
put_gauss_peak(u2, x, y, height)
put_gauss_peak(u3, x, y, height)
def draw_waves(display, u, data, offset, caption):
global velocity
global font
data[1:dimx, 1:dimy, 0] = 255-np.clip((u[0, 1:dimx, 1:dimy]>0) * 10 * u[0, 1:dimx, 1:dimy]+u[1, 1:dimx, 1:dimy]+u[2, 1:dimx, 1:dimy], 0, 255)
data[1:dimx, 1:dimy, 1] = 255-np.clip(np.abs(u[0, 1:dimx, 1:dimy]) * 10, 0, 255)
data[1:dimx, 1:dimy, 2] = 255-np.clip((u[0, 1:dimx, 1:dimy]<=0) * -10 * u[0, 1:dimx, 1:dimy] + u[1, 1:dimx, 1:dimy] + u[2, 1:dimx, 1:dimy], 0, 255)
# data[1:dimx, 1:dimy, 0] = data[1:dimx, 1:dimy, 0] * 5 * velocity[1:dimx, 1:dimy]
# data[1:dimx, 1:dimy, 1] = data[1:dimx, 1:dimy, 1] * 5 * velocity[1:dimx, 1:dimy]
# data[1:dimx, 1:dimy, 2] = data[1:dimx, 1:dimy, 2] * 5 * velocity[1:dimx, 1:dimy]
surf = pygame.surfarray.make_surface(data)
display.blit(pygame.transform.scale(surf, (dimx * cellsize, dimy * cellsize)), offset)
text_surface = font.render(caption, True, (0, 0, 40))
display.blit(text_surface, (offset[0] + 5, offset[1] + 5))
def draw_text(display, fps, tick):
global font
# text_surface = font.render('2D Wave Equation - Explicit Euler (Radiating Boundary Conditions)', True, (0, 0, 40))
# display.blit(text_surface, (5,5))
text_surface = font.render(f'FPS: {fps:.1f}; t={tick*ts:.2f} s; area={dimx*hs}x{dimy*hs} m', True, (0, 0, 40))
display.blit(text_surface, (5, 2*dimy*cellsize - 20))
def main():
global font
pygame.init()
pygame.font.init()
font = pygame.font.SysFont('Consolas', 15)
display = pygame.display.set_mode((2*dimx*cellsize, 2*dimy*cellsize))
pygame.display.set_caption("Solving the 2d Wave Equation")
create_arrays()
set_initial_conditions(u)
set_initial_conditions(u1)
set_initial_conditions(u2)
set_initial_conditions(u3)
image1data = np.zeros((dimx, dimy, 3), dtype = np.uint8 )
image2data = np.zeros((dimx, dimy, 3), dtype = np.uint8 )
image3data = np.zeros((dimx, dimy, 3), dtype = np.uint8 )
image4data = np.zeros((dimx, dimy, 3), dtype = np.uint8 )
tick = 0
last_tick = 0
fps = 0
start_time = time.time()
time.sleep(1)
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
return
tick = tick + 1
current_time = time.time()
if current_time - start_time > 0.5:
fps = (tick-last_tick) / (current_time - start_time)
start_time = time.time()
last_tick = tick
#place_raindrops(u, u1, u2, u3, tick)
caption = update(u, 0)
draw_waves(display, u, image1data, (0,0), caption)
caption = update(u1, 2)
draw_waves(display, u1, image2data, (cellsize*dimx, 0), caption)
caption = update(u2, 3)
draw_waves(display, u2, image3data, (0, cellsize*dimy), caption)
caption = update(u3, 4)
draw_waves(display, u3, image4data, (cellsize*dimx, cellsize*dimy), caption)
draw_text(display, fps, tick)
pygame.display.update()
if __name__ == "__main__":
main()