From 3b9305192c022d429c4d5296213d85ae649b6c18 Mon Sep 17 00:00:00 2001 From: Matthew Scroggs Date: Wed, 27 Nov 2024 10:35:45 +0000 Subject: [PATCH] Nedelec and RT on quads and hexes (#62) * nedelec on quads * working on nedelec on hexes * fix nedelec on a hex * raviart thomas on quads and hexes --- src/ciarlet.rs | 409 ++++++++++++++++++++++------------ src/ciarlet/nedelec.rs | 321 +++++++++++++++++++++++++- src/ciarlet/raviart_thomas.rs | 292 ++++++++++++++++++++++++ src/polynomials.rs | 50 ++--- src/polynomials/legendre.rs | 4 +- src/reference_cell.rs | 80 +++++-- 6 files changed, 969 insertions(+), 187 deletions(-) diff --git a/src/ciarlet.rs b/src/ciarlet.rs index bc1332e..5fe82a2 100644 --- a/src/ciarlet.rs +++ b/src/ciarlet.rs @@ -427,14 +427,9 @@ mod test { e.tabulate(&points, 0, &mut data); for pt in 0..4 { - assert_relative_eq!( - *data.get([0, pt, 0, 0]).unwrap(), - 1.0 - *points.get([0, pt]).unwrap() - ); - assert_relative_eq!( - *data.get([0, pt, 1, 0]).unwrap(), - *points.get([0, pt]).unwrap() - ); + let x = *points.get([0, pt]).unwrap(); + assert_relative_eq!(*data.get([0, pt, 0, 0]).unwrap(), 1.0 - x); + assert_relative_eq!(*data.get([0, pt, 1, 0]).unwrap(), x); } check_dofs(e); } @@ -488,18 +483,11 @@ mod test { e.tabulate(&points, 0, &mut data); for pt in 0..6 { - assert_relative_eq!( - *data.get([0, pt, 0, 0]).unwrap(), - 1.0 - *points.get([0, pt]).unwrap() - *points.get([1, pt]).unwrap() - ); - assert_relative_eq!( - *data.get([0, pt, 1, 0]).unwrap(), - *points.get([0, pt]).unwrap() - ); - assert_relative_eq!( - *data.get([0, pt, 2, 0]).unwrap(), - *points.get([1, pt]).unwrap() - ); + let x = *points.get([0, pt]).unwrap(); + let y = *points.get([1, pt]).unwrap(); + assert_relative_eq!(*data.get([0, pt, 0, 0]).unwrap(), 1.0 - x - y); + assert_relative_eq!(*data.get([0, pt, 1, 0]).unwrap(), x); + assert_relative_eq!(*data.get([0, pt, 2, 0]).unwrap(), y); } check_dofs(e); } @@ -556,22 +544,12 @@ mod test { e.tabulate(&points, 0, &mut data); for pt in 0..6 { - assert_relative_eq!( - *data.get([0, pt, 0, 0]).unwrap(), - (1.0 - *points.get([0, pt]).unwrap()) * (1.0 - *points.get([1, pt]).unwrap()) - ); - assert_relative_eq!( - *data.get([0, pt, 1, 0]).unwrap(), - *points.get([0, pt]).unwrap() * (1.0 - *points.get([1, pt]).unwrap()) - ); - assert_relative_eq!( - *data.get([0, pt, 2, 0]).unwrap(), - (1.0 - *points.get([0, pt]).unwrap()) * *points.get([1, pt]).unwrap() - ); - assert_relative_eq!( - *data.get([0, pt, 3, 0]).unwrap(), - *points.get([0, pt]).unwrap() * *points.get([1, pt]).unwrap() - ); + let x = *points.get([0, pt]).unwrap(); + let y = *points.get([1, pt]).unwrap(); + assert_relative_eq!(*data.get([0, pt, 0, 0]).unwrap(), (1.0 - x) * (1.0 - y)); + assert_relative_eq!(*data.get([0, pt, 1, 0]).unwrap(), x * (1.0 - y)); + assert_relative_eq!(*data.get([0, pt, 2, 0]).unwrap(), (1.0 - x) * y); + assert_relative_eq!(*data.get([0, pt, 3, 0]).unwrap(), x * y); } check_dofs(e); } @@ -710,28 +688,17 @@ mod test { e.tabulate(&points, 0, &mut data); for pt in 0..6 { + let x = *points.get([0, pt]).unwrap(); + let y = *points.get([1, pt]).unwrap(); + let z = *points.get([2, pt]).unwrap(); assert_relative_eq!( *data.get([0, pt, 0, 0]).unwrap(), - 1.0 - *points.get([0, pt]).unwrap() - - *points.get([1, pt]).unwrap() - - *points.get([2, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 1, 0]).unwrap(), - *points.get([0, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 2, 0]).unwrap(), - *points.get([1, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 3, 0]).unwrap(), - *points.get([2, pt]).unwrap(), + 1.0 - x - y - z, epsilon = 1e-14 ); + assert_relative_eq!(*data.get([0, pt, 1, 0]).unwrap(), x, epsilon = 1e-14); + assert_relative_eq!(*data.get([0, pt, 2, 0]).unwrap(), y, epsilon = 1e-14); + assert_relative_eq!(*data.get([0, pt, 3, 0]).unwrap(), z, epsilon = 1e-14); } check_dofs(e); } @@ -797,60 +764,47 @@ mod test { e.tabulate(&points, 0, &mut data); for pt in 0..6 { + let x = *points.get([0, pt]).unwrap(); + let y = *points.get([1, pt]).unwrap(); + let z = *points.get([2, pt]).unwrap(); assert_relative_eq!( *data.get([0, pt, 0, 0]).unwrap(), - (1.0 - *points.get([0, pt]).unwrap()) - * (1.0 - *points.get([1, pt]).unwrap()) - * (1.0 - *points.get([2, pt]).unwrap()), + (1.0 - x) * (1.0 - y) * (1.0 - z), epsilon = 1e-14 ); assert_relative_eq!( *data.get([0, pt, 1, 0]).unwrap(), - *points.get([0, pt]).unwrap() - * (1.0 - *points.get([1, pt]).unwrap()) - * (1.0 - *points.get([2, pt]).unwrap()), + x * (1.0 - y) * (1.0 - z), epsilon = 1e-14 ); assert_relative_eq!( *data.get([0, pt, 2, 0]).unwrap(), - (1.0 - *points.get([0, pt]).unwrap()) - * *points.get([1, pt]).unwrap() - * (1.0 - *points.get([2, pt]).unwrap()), + (1.0 - x) * y * (1.0 - z), epsilon = 1e-14 ); assert_relative_eq!( *data.get([0, pt, 3, 0]).unwrap(), - *points.get([0, pt]).unwrap() - * *points.get([1, pt]).unwrap() - * (1.0 - *points.get([2, pt]).unwrap()), + x * y * (1.0 - z), epsilon = 1e-14 ); assert_relative_eq!( *data.get([0, pt, 4, 0]).unwrap(), - (1.0 - *points.get([0, pt]).unwrap()) - * (1.0 - *points.get([1, pt]).unwrap()) - * *points.get([2, pt]).unwrap(), + (1.0 - x) * (1.0 - y) * z, epsilon = 1e-14 ); assert_relative_eq!( *data.get([0, pt, 5, 0]).unwrap(), - *points.get([0, pt]).unwrap() - * (1.0 - *points.get([1, pt]).unwrap()) - * *points.get([2, pt]).unwrap(), + x * (1.0 - y) * z, epsilon = 1e-14 ); assert_relative_eq!( *data.get([0, pt, 6, 0]).unwrap(), - (1.0 - *points.get([0, pt]).unwrap()) - * *points.get([1, pt]).unwrap() - * *points.get([2, pt]).unwrap(), + (1.0 - x) * y * z, epsilon = 1e-14 ); assert_relative_eq!( *data.get([0, pt, 7, 0]).unwrap(), - *points.get([0, pt]).unwrap() - * *points.get([1, pt]).unwrap() - * *points.get([2, pt]).unwrap(), + x * y * z, epsilon = 1e-14 ); } @@ -933,36 +887,13 @@ mod test { e.tabulate(&points, 0, &mut data); for pt in 0..6 { - assert_relative_eq!( - *data.get([0, pt, 0, 0]).unwrap(), - -*points.get([0, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 0, 1]).unwrap(), - -*points.get([1, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 1, 0]).unwrap(), - *points.get([0, pt]).unwrap() - 1.0, - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 1, 1]).unwrap(), - *points.get([1, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 2, 0]).unwrap(), - -*points.get([0, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 2, 1]).unwrap(), - 1.0 - *points.get([1, pt]).unwrap(), - epsilon = 1e-14 - ); + let x = *points.get([0, pt]).unwrap(); + let y = *points.get([1, pt]).unwrap(); + for (i, basis_f) in [[-x, -y], [x - 1.0, y], [-x, 1.0 - y]].iter().enumerate() { + for (d, value) in basis_f.iter().enumerate() { + assert_relative_eq!(*data.get([0, pt, i, d]).unwrap(), value, epsilon = 1e-14); + } + } } check_dofs(e); } @@ -981,6 +912,63 @@ mod test { check_dofs(e); } + #[test] + fn test_raviart_thomas_1_quadrilateral() { + let e = raviart_thomas::create(ReferenceCellType::Quadrilateral, 1, Continuity::Standard); + assert_eq!(e.value_size(), 2); + let mut data = rlst_dynamic_array4!(f64, e.tabulate_array_shape(0, 6)); + let mut points = rlst_dynamic_array2!(f64, [2, 6]); + *points.get_mut([0, 0]).unwrap() = 0.0; + *points.get_mut([1, 0]).unwrap() = 0.0; + *points.get_mut([0, 1]).unwrap() = 1.0; + *points.get_mut([1, 1]).unwrap() = 0.0; + *points.get_mut([0, 2]).unwrap() = 0.0; + *points.get_mut([1, 2]).unwrap() = 1.0; + *points.get_mut([0, 3]).unwrap() = 0.5; + *points.get_mut([1, 3]).unwrap() = 0.0; + *points.get_mut([0, 4]).unwrap() = 1.0; + *points.get_mut([1, 4]).unwrap() = 0.5; + *points.get_mut([0, 5]).unwrap() = 0.5; + *points.get_mut([1, 5]).unwrap() = 0.5; + e.tabulate(&points, 0, &mut data); + + for pt in 0..6 { + let x = *points.get([0, pt]).unwrap(); + let y = *points.get([1, pt]).unwrap(); + for (i, basis_f) in [[0.0, 1.0 - y], [x - 1.0, 0.0], [-x, 0.0], [0.0, y]] + .iter() + .enumerate() + { + for (d, value) in basis_f.iter().enumerate() { + assert_relative_eq!(*data.get([0, pt, i, d]).unwrap(), value, epsilon = 1e-14); + } + } + } + check_dofs(e); + } + + #[test] + fn test_raviart_thomas_2_quadrilateral() { + let e = raviart_thomas::create::( + ReferenceCellType::Quadrilateral, + 2, + Continuity::Standard, + ); + assert_eq!(e.value_size(), 2); + check_dofs(e); + } + + #[test] + fn test_raviart_thomas_3_quadrilateral() { + let e = raviart_thomas::create::( + ReferenceCellType::Quadrilateral, + 3, + Continuity::Standard, + ); + assert_eq!(e.value_size(), 2); + check_dofs(e); + } + #[test] fn test_raviart_thomas_1_tetrahedron() { let e = @@ -1005,6 +993,63 @@ mod test { check_dofs(e); } + #[test] + fn test_raviart_thomas_1_hexahedron() { + let e = raviart_thomas::create(ReferenceCellType::Hexahedron, 1, Continuity::Standard); + assert_eq!(e.value_size(), 3); + let mut data = rlst_dynamic_array4!(f64, e.tabulate_array_shape(0, 6)); + let mut points = rlst_dynamic_array2!(f64, [3, 6]); + *points.get_mut([0, 0]).unwrap() = 0.0; + *points.get_mut([1, 0]).unwrap() = 0.0; + *points.get_mut([2, 0]).unwrap() = 0.0; + *points.get_mut([0, 1]).unwrap() = 1.0; + *points.get_mut([1, 1]).unwrap() = 0.0; + *points.get_mut([2, 1]).unwrap() = 0.8; + *points.get_mut([0, 2]).unwrap() = 0.0; + *points.get_mut([1, 2]).unwrap() = 1.0; + *points.get_mut([2, 2]).unwrap() = 1.0; + *points.get_mut([0, 3]).unwrap() = 0.5; + *points.get_mut([1, 3]).unwrap() = 0.0; + *points.get_mut([2, 3]).unwrap() = 0.1; + *points.get_mut([0, 4]).unwrap() = 1.0; + *points.get_mut([1, 4]).unwrap() = 0.5; + *points.get_mut([2, 4]).unwrap() = 0.5; + *points.get_mut([0, 5]).unwrap() = 0.5; + *points.get_mut([1, 5]).unwrap() = 0.5; + *points.get_mut([2, 5]).unwrap() = 1.0; + e.tabulate(&points, 0, &mut data); + + for pt in 0..6 { + let x = *points.get([0, pt]).unwrap(); + let y = *points.get([1, pt]).unwrap(); + let z = *points.get([2, pt]).unwrap(); + for (i, basis_f) in [ + [0.0, 0.0, 1.0 - z], + [0.0, y - 1.0, 0.0], + [1.0 - x, 0.0, 0.0], + [x, 0.0, 0.0], + [0.0, -y, 0.0], + [0.0, 0.0, z], + ] + .iter() + .enumerate() + { + for (d, value) in basis_f.iter().enumerate() { + assert_relative_eq!(*data.get([0, pt, i, d]).unwrap(), value, epsilon = 1e-14); + } + } + } + check_dofs(e); + } + + #[test] + fn test_raviart_thomas_2_hexahedron() { + let e = + raviart_thomas::create::(ReferenceCellType::Hexahedron, 2, Continuity::Standard); + assert_eq!(e.value_size(), 3); + check_dofs(e); + } + #[test] fn test_nedelec_1_triangle() { let e = nedelec::create(ReferenceCellType::Triangle, 1, Continuity::Standard); @@ -1026,36 +1071,13 @@ mod test { e.tabulate(&points, 0, &mut data); for pt in 0..6 { - assert_relative_eq!( - *data.get([0, pt, 0, 0]).unwrap(), - -*points.get([1, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 0, 1]).unwrap(), - *points.get([0, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 1, 0]).unwrap(), - *points.get([1, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 1, 1]).unwrap(), - 1.0 - *points.get([0, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 2, 0]).unwrap(), - 1.0 - *points.get([1, pt]).unwrap(), - epsilon = 1e-14 - ); - assert_relative_eq!( - *data.get([0, pt, 2, 1]).unwrap(), - *points.get([0, pt]).unwrap(), - epsilon = 1e-14 - ); + let x = *points.get([0, pt]).unwrap(); + let y = *points.get([1, pt]).unwrap(); + for (i, basis_f) in [[-y, x], [y, 1.0 - x], [1.0 - y, x]].iter().enumerate() { + for (d, value) in basis_f.iter().enumerate() { + assert_relative_eq!(*data.get([0, pt, i, d]).unwrap(), value, epsilon = 1e-14); + } + } } check_dofs(e); } @@ -1074,6 +1096,55 @@ mod test { check_dofs(e); } + #[test] + fn test_nedelec_1_quadrilateral() { + let e = nedelec::create(ReferenceCellType::Quadrilateral, 1, Continuity::Standard); + assert_eq!(e.value_size(), 2); + let mut data = rlst_dynamic_array4!(f64, e.tabulate_array_shape(0, 6)); + let mut points = rlst_dynamic_array2!(f64, [2, 6]); + *points.get_mut([0, 0]).unwrap() = 0.0; + *points.get_mut([1, 0]).unwrap() = 0.0; + *points.get_mut([0, 1]).unwrap() = 1.0; + *points.get_mut([1, 1]).unwrap() = 0.0; + *points.get_mut([0, 2]).unwrap() = 0.0; + *points.get_mut([1, 2]).unwrap() = 1.0; + *points.get_mut([0, 3]).unwrap() = 0.5; + *points.get_mut([1, 3]).unwrap() = 0.0; + *points.get_mut([0, 4]).unwrap() = 1.0; + *points.get_mut([1, 4]).unwrap() = 0.5; + *points.get_mut([0, 5]).unwrap() = 0.5; + *points.get_mut([1, 5]).unwrap() = 0.5; + e.tabulate(&points, 0, &mut data); + + for pt in 0..6 { + let x = *points.get([0, pt]).unwrap(); + let y = *points.get([1, pt]).unwrap(); + for (i, basis_f) in [[1.0 - y, 0.0], [0.0, 1.0 - x], [0.0, x], [y, 0.0]] + .iter() + .enumerate() + { + for (d, value) in basis_f.iter().enumerate() { + assert_relative_eq!(*data.get([0, pt, i, d]).unwrap(), value, epsilon = 1e-14); + } + } + } + check_dofs(e); + } + + #[test] + fn test_nedelec_2_quadrilateral() { + let e = nedelec::create::(ReferenceCellType::Quadrilateral, 2, Continuity::Standard); + assert_eq!(e.value_size(), 2); + check_dofs(e); + } + + #[test] + fn test_nedelec_3_quadrilateral() { + let e = nedelec::create::(ReferenceCellType::Quadrilateral, 3, Continuity::Standard); + assert_eq!(e.value_size(), 2); + check_dofs(e); + } + #[test] fn test_nedelec_1_tetrahedron() { let e = nedelec::create::(ReferenceCellType::Tetrahedron, 1, Continuity::Standard); @@ -1095,6 +1166,68 @@ mod test { check_dofs(e); } + #[test] + fn test_nedelec_1_hexahedron() { + let e = nedelec::create(ReferenceCellType::Hexahedron, 1, Continuity::Standard); + assert_eq!(e.value_size(), 3); + let mut data = rlst_dynamic_array4!(f64, e.tabulate_array_shape(0, 6)); + let mut points = rlst_dynamic_array2!(f64, [3, 6]); + *points.get_mut([0, 0]).unwrap() = 0.0; + *points.get_mut([1, 0]).unwrap() = 0.0; + *points.get_mut([2, 0]).unwrap() = 0.0; + *points.get_mut([0, 1]).unwrap() = 1.0; + *points.get_mut([1, 1]).unwrap() = 0.0; + *points.get_mut([2, 1]).unwrap() = 0.8; + *points.get_mut([0, 2]).unwrap() = 0.0; + *points.get_mut([1, 2]).unwrap() = 1.0; + *points.get_mut([2, 2]).unwrap() = 1.0; + *points.get_mut([0, 3]).unwrap() = 0.5; + *points.get_mut([1, 3]).unwrap() = 0.0; + *points.get_mut([2, 3]).unwrap() = 0.1; + *points.get_mut([0, 4]).unwrap() = 1.0; + *points.get_mut([1, 4]).unwrap() = 0.5; + *points.get_mut([2, 4]).unwrap() = 0.5; + *points.get_mut([0, 5]).unwrap() = 0.5; + *points.get_mut([1, 5]).unwrap() = 0.5; + *points.get_mut([2, 5]).unwrap() = 1.0; + e.tabulate(&points, 0, &mut data); + + for pt in 0..6 { + let x = *points.get([0, pt]).unwrap(); + let y = *points.get([1, pt]).unwrap(); + let z = *points.get([2, pt]).unwrap(); + for (i, basis_f) in [ + [(1.0 - y) * (1.0 - z), 0.0, 0.0], + [0.0, (1.0 - x) * (1.0 - z), 0.0], + [0.0, 0.0, (1.0 - x) * (1.0 - y)], + [0.0, x * (1.0 - z), 0.0], + [0.0, 0.0, x * (1.0 - y)], + [y * (1.0 - z), 0.0, 0.0], + [0.0, 0.0, (1.0 - x) * y], + [0.0, 0.0, x * y], + [(1.0 - y) * z, 0.0, 0.0], + [0.0, (1.0 - x) * z, 0.0], + [0.0, x * z, 0.0], + [y * z, 0.0, 0.0], + ] + .iter() + .enumerate() + { + for (d, value) in basis_f.iter().enumerate() { + assert_relative_eq!(*data.get([0, pt, i, d]).unwrap(), value, epsilon = 1e-14); + } + } + } + check_dofs(e); + } + + #[test] + fn test_nedelec_2_hexahedron() { + let e = nedelec::create::(ReferenceCellType::Hexahedron, 2, Continuity::Standard); + assert_eq!(e.value_size(), 3); + check_dofs(e); + } + macro_rules! test_entity_closure_dofs_lagrange { ($cell:ident, $degree:expr) => { paste! { diff --git a/src/ciarlet/nedelec.rs b/src/ciarlet/nedelec.rs index bb9a996..ed32b72 100644 --- a/src/ciarlet/nedelec.rs +++ b/src/ciarlet/nedelec.rs @@ -265,13 +265,13 @@ fn create_simplex, T: RlstScalar + let mut pts = rlst_dynamic_array2!(T::Real, [tdim, face_q.npoints]); let mut mat = rlst_dynamic_array3!(T, [2 * pdim_face_minus2, tdim, face_q.npoints]); - for tangent in 0..2 { - for (w_i, wt) in face_q.weights.iter().enumerate() { - for i in 0..tdim { - pts[[i, w_i]] = vertices[face[0]][i] - + (vertices[face[1]][i] - vertices[face[0]][i]) * face_pts[[0, w_i]] - + (vertices[face[2]][i] - vertices[face[0]][i]) * face_pts[[1, w_i]]; + for (w_i, wt) in face_q.weights.iter().enumerate() { + for i in 0..tdim { + pts[[i, w_i]] = vertices[face[0]][i] + + (vertices[face[1]][i] - vertices[face[0]][i]) * face_pts[[0, w_i]] + + (vertices[face[2]][i] - vertices[face[0]][i]) * face_pts[[1, w_i]]; + for tangent in 0..2 { for j in 0..pdim_face_minus2 { mat[[tangent * pdim_face_minus2 + j, i, w_i]] = T::from(*wt).unwrap() * face_phi[[0, j, w_i]] @@ -331,6 +331,311 @@ fn create_simplex, T: RlstScalar + ) } +fn create_tp, T: RlstScalar + MatrixInverse>( + cell_type: ReferenceCellType, + degree: usize, + continuity: Continuity, +) -> CiarletElement { + if cell_type != ReferenceCellType::Quadrilateral && cell_type != ReferenceCellType::Hexahedron { + panic!("Invalid cell: {cell_type:?}"); + } + + if degree < 1 { + panic!("Degree must be at least 1"); + } + + let tdim = reference_cell::dim(cell_type); + let cell_q = gauss_jacobi_rule(cell_type, 2 * degree).unwrap(); + let pts_t = cell_q + .points + .iter() + .map(|i| TReal::from(*i).unwrap()) + .collect::>(); + let pts = rlst_array_from_slice2!(&pts_t, [tdim, cell_q.npoints]); + + let mut phi = rlst_dynamic_array3![T, legendre_shape(cell_type, &pts, degree, 0)]; + tabulate_legendre_polynomials(cell_type, &pts, degree, 0, &mut phi); + + let pdim = phi.shape()[1]; + + let pdim_edge = polynomial_count(ReferenceCellType::Interval, degree); + let pdim_edge_minus1 = polynomial_count(ReferenceCellType::Interval, degree - 1); + let pdim_edge_minus2 = if degree < 2 { + 0 + } else { + polynomial_count(ReferenceCellType::Interval, degree - 2) + }; + + let entity_counts = reference_cell::entity_counts(cell_type); + + let mut wcoeffs = rlst_dynamic_array3!( + T, + [ + entity_counts[1] * pdim_edge_minus1 + + entity_counts[2] * 2 * pdim_edge_minus1 * pdim_edge_minus2 + + entity_counts[3] * 3 * pdim_edge_minus1 * pdim_edge_minus2 * pdim_edge_minus2, + tdim, + pdim + ] + ); + + // vector polynomials of degree <= n-1 + if tdim == 2 { + for i in 0..pdim_edge_minus1 { + for j in 0..pdim_edge { + *wcoeffs + .get_mut([i * pdim_edge + j, 0, i * pdim_edge + j]) + .unwrap() = T::from(1.0).unwrap(); + *wcoeffs + .get_mut([ + pdim_edge_minus1 * pdim_edge + j * pdim_edge_minus1 + i, + 1, + j * pdim_edge + i, + ]) + .unwrap() = T::from(1.0).unwrap(); + } + } + } else { + for i in 0..pdim_edge_minus1 { + for j in 0..pdim_edge { + for k in 0..pdim_edge { + *wcoeffs + .get_mut([ + i * pdim_edge.pow(2) + j * pdim_edge + k, + 0, + i * pdim_edge.pow(2) + j * pdim_edge + k, + ]) + .unwrap() = T::from(1.0).unwrap(); + *wcoeffs + .get_mut([ + pdim_edge.pow(2) * pdim_edge_minus1 + + k * pdim_edge * pdim_edge_minus1 + + i * pdim_edge + + j, + 1, + k * pdim_edge.pow(2) + i * pdim_edge + j, + ]) + .unwrap() = T::from(1.0).unwrap(); + *wcoeffs + .get_mut([ + pdim_edge.pow(2) * pdim_edge_minus1 * 2 + + j * pdim_edge * pdim_edge_minus1 + + k * pdim_edge_minus1 + + i, + 2, + j * pdim_edge.pow(2) + k * pdim_edge + i, + ]) + .unwrap() = T::from(1.0).unwrap(); + } + } + } + } + + let mut x = [vec![], vec![], vec![], vec![]]; + let mut m = [vec![], vec![], vec![], vec![]]; + + let vertices = reference_cell::vertices::(cell_type); + + for _ in 0..entity_counts[0] { + x[0].push(rlst_dynamic_array2!(T::Real, [tdim, 0])); + m[0].push(rlst_dynamic_array3!(T, [0, tdim, 0])); + } + + // DOFs on edges + let edge_q = gauss_jacobi_rule(ReferenceCellType::Interval, 2 * degree - 1).unwrap(); + let edge_pts_t = edge_q + .points + .iter() + .map(|i| TReal::from(*i).unwrap()) + .collect::>(); + let edge_pts = rlst_array_from_slice2!(&edge_pts_t, [1, edge_q.npoints]); + + let mut edge_phi = rlst_dynamic_array3![ + T, + legendre_shape(ReferenceCellType::Interval, &edge_pts, degree - 1, 0) + ]; + tabulate_legendre_polynomials( + ReferenceCellType::Interval, + &edge_pts, + degree - 1, + 0, + &mut edge_phi, + ); + + for edge in reference_cell::edges(cell_type) { + let mut pts = rlst_dynamic_array2!(T::Real, [tdim, edge_q.npoints]); + let mut mat = rlst_dynamic_array3!(T, [pdim_edge_minus1, tdim, edge_q.npoints]); + + for (w_i, (pt, wt)) in izip!(&edge_pts_t, &edge_q.weights).enumerate() { + for i in 0..tdim { + pts[[i, w_i]] = + vertices[edge[0]][i] + (vertices[edge[1]][i] - vertices[edge[0]][i]) * *pt; + + for j in 0..pdim_edge_minus1 { + mat[[j, i, w_i]] = T::from(*wt).unwrap() + * edge_phi[[0, j, w_i]] + * T::from(vertices[edge[1]][i] - vertices[edge[0]][i]).unwrap(); + } + } + } + + x[1].push(pts); + m[1].push(mat); + } + + // DOFs on faces + if degree == 1 { + for _ in 0..entity_counts[2] { + x[2].push(rlst_dynamic_array2!(T::Real, [tdim, 0])); + m[2].push(rlst_dynamic_array3!(T, [0, tdim, 0])) + } + } else { + let face_q = gauss_jacobi_rule(ReferenceCellType::Quadrilateral, 2 * degree - 1).unwrap(); + let face_pts_t = face_q + .points + .iter() + .map(|i| TReal::from(*i).unwrap()) + .collect::>(); + let face_pts = rlst_array_from_slice2!(&face_pts_t, [2, face_q.npoints]); + + let mut face_phi = rlst_dynamic_array3![ + T, + legendre_shape(ReferenceCellType::Quadrilateral, &face_pts, degree - 1, 0) + ]; + tabulate_legendre_polynomials( + ReferenceCellType::Quadrilateral, + &face_pts, + degree - 1, + 0, + &mut face_phi, + ); + + for face in reference_cell::faces(cell_type) { + let mut pts = rlst_dynamic_array2!(T::Real, [tdim, face_q.npoints]); + let mut mat = rlst_dynamic_array3!( + T, + [ + 2 * pdim_edge_minus2 * pdim_edge_minus1, + tdim, + face_q.npoints + ] + ); + + for (w_i, wt) in face_q.weights.iter().enumerate() { + for i in 0..tdim { + pts[[i, w_i]] = vertices[face[0]][i] + + (vertices[face[1]][i] - vertices[face[0]][i]) * face_pts[[0, w_i]] + + (vertices[face[2]][i] - vertices[face[0]][i]) * face_pts[[1, w_i]]; + } + for i in 0..pdim_edge_minus2 { + for j in 0..pdim_edge_minus1 { + let index = 2 * (i * pdim_edge_minus1 + j); + let entry0 = + T::from(*wt).unwrap() * face_phi[[0, j * pdim_edge_minus1 + i, w_i]]; + let entry1 = + T::from(*wt).unwrap() * face_phi[[0, i * pdim_edge_minus1 + j, w_i]]; + for d in 0..tdim { + mat[[index, d, w_i]] = entry0 + * T::from(vertices[face[1]][d] - vertices[face[0]][d]).unwrap(); + mat[[index + 1, d, w_i]] = entry1 + * T::from(vertices[face[2]][d] - vertices[face[0]][d]).unwrap(); + } + } + } + } + x[2].push(pts); + m[2].push(mat); + } + } + // DOFs on volume + if tdim == 3 { + if degree == 1 { + x[3].push(rlst_dynamic_array2!(T::Real, [tdim, 0])); + m[3].push(rlst_dynamic_array3!(T, [0, tdim, 0])) + } else { + let interior_q = + gauss_jacobi_rule(ReferenceCellType::Hexahedron, 2 * degree - 1).unwrap(); + let interior_pts_t = interior_q + .points + .iter() + .map(|i| TReal::from(*i).unwrap()) + .collect::>(); + let interior_pts = rlst_array_from_slice2!(&interior_pts_t, [3, interior_q.npoints]); + + let mut interior_phi = rlst_dynamic_array3![ + T, + legendre_shape(ReferenceCellType::Hexahedron, &interior_pts, degree - 1, 0) + ]; + tabulate_legendre_polynomials( + ReferenceCellType::Hexahedron, + &interior_pts, + degree - 1, + 0, + &mut interior_phi, + ); + + let mut pts = rlst_dynamic_array2!(T::Real, [tdim, interior_q.npoints]); + let mut mat = rlst_dynamic_array3!( + T, + [ + 3 * pdim_edge_minus2.pow(2) * pdim_edge_minus1, + tdim, + interior_q.npoints + ] + ); + + for (w_i, wt) in interior_q.weights.iter().enumerate() { + for i in 0..tdim { + pts[[i, w_i]] = interior_pts[[i, w_i]]; + } + for i in 0..pdim_edge_minus2 { + for j in 0..pdim_edge_minus2 { + for k in 0..pdim_edge_minus1 { + let index = 3 + * (i * pdim_edge_minus1 * pdim_edge_minus2 + + j * pdim_edge_minus1 + + k); + mat[[index, 0, w_i]] = T::from(*wt).unwrap() + * interior_phi[[ + 0, + k * pdim_edge_minus1.pow(2) + j * pdim_edge_minus1 + i, + w_i, + ]]; + mat[[index + 1, 1, w_i]] = T::from(*wt).unwrap() + * interior_phi[[ + 0, + i * pdim_edge_minus1.pow(2) + k * pdim_edge_minus1 + j, + w_i, + ]]; + mat[[index + 2, 2, w_i]] = T::from(*wt).unwrap() + * interior_phi[[ + 0, + j * pdim_edge_minus1.pow(2) + i * pdim_edge_minus1 + k, + w_i, + ]]; + } + } + } + } + x[3].push(pts); + m[3].push(mat); + } + } + + CiarletElement::create( + "Nedelec (first kind)".to_string(), + cell_type, + degree, + vec![tdim], + wcoeffs, + x, + m, + MapType::CovariantPiola, + continuity, + degree, + ) +} + /// Create a Nedelec (first kind) element pub fn create( cell_type: ReferenceCellType, @@ -339,6 +644,10 @@ pub fn create( ) -> CiarletElement { if cell_type == ReferenceCellType::Triangle || cell_type == ReferenceCellType::Tetrahedron { create_simplex(cell_type, degree, continuity) + } else if cell_type == ReferenceCellType::Quadrilateral + || cell_type == ReferenceCellType::Hexahedron + { + create_tp(cell_type, degree, continuity) } else { panic!("Invalid cell: {cell_type:?}"); } diff --git a/src/ciarlet/raviart_thomas.rs b/src/ciarlet/raviart_thomas.rs index e1662fb..e2b87c2 100644 --- a/src/ciarlet/raviart_thomas.rs +++ b/src/ciarlet/raviart_thomas.rs @@ -191,6 +191,294 @@ fn create_simplex, T: RlstScalar + ) } +fn create_tp, T: RlstScalar + MatrixInverse>( + cell_type: ReferenceCellType, + degree: usize, + continuity: Continuity, +) -> CiarletElement { + if cell_type != ReferenceCellType::Quadrilateral && cell_type != ReferenceCellType::Hexahedron { + panic!("Invalid cell: {cell_type:?}"); + } + + if degree < 1 { + panic!("Degree must be at least 1"); + } + + let tdim = reference_cell::dim(cell_type); + let cell_q = gauss_jacobi_rule(cell_type, 2 * degree).unwrap(); + let pts_t = cell_q + .points + .iter() + .map(|i| TReal::from(*i).unwrap()) + .collect::>(); + let pts = rlst_array_from_slice2!(&pts_t, [tdim, cell_q.npoints]); + + let mut phi = rlst_dynamic_array3![T, legendre_shape(cell_type, &pts, degree, 0)]; + tabulate_legendre_polynomials(cell_type, &pts, degree, 0, &mut phi); + + let pdim = phi.shape()[1]; + + let pdim_edge = polynomial_count(ReferenceCellType::Interval, degree); + let pdim_edge_minus1 = polynomial_count(ReferenceCellType::Interval, degree - 1); + let pdim_edge_minus2 = if degree < 2 { + 0 + } else { + polynomial_count(ReferenceCellType::Interval, degree - 2) + }; + + let facet_type = if tdim == 2 { + ReferenceCellType::Interval + } else { + ReferenceCellType::Quadrilateral + }; + let pdim_facet_minus1 = polynomial_count(facet_type, degree - 1); + let pdim_internal = tdim * pdim_edge_minus2 * pdim_edge_minus1.pow(tdim as u32 - 1); + + let entity_counts = reference_cell::entity_counts(cell_type); + + let mut wcoeffs = rlst_dynamic_array3!( + T, + [ + entity_counts[tdim - 1] * pdim_facet_minus1 + entity_counts[tdim] * pdim_internal, + tdim, + pdim, + ] + ); + + // vector polynomials of degree <= n-1 + if tdim == 2 { + for i in 0..pdim_edge_minus1 { + for j in 0..pdim_edge { + *wcoeffs + .get_mut([j * pdim_edge_minus1 + i, 0, j * pdim_edge + i]) + .unwrap() = T::from(1.0).unwrap(); + *wcoeffs + .get_mut([ + pdim_edge_minus1 * pdim_edge + i * pdim_edge + j, + 1, + i * pdim_edge + j, + ]) + .unwrap() = T::from(1.0).unwrap(); + } + } + } else { + for i in 0..pdim_edge_minus1 { + for j in 0..pdim_edge_minus1 { + for k in 0..pdim_edge { + *wcoeffs + .get_mut([ + k * pdim_edge_minus1.pow(2) + j * pdim_edge_minus1 + i, + 0, + k * pdim_edge.pow(2) + j * pdim_edge + i, + ]) + .unwrap() = T::from(1.0).unwrap(); + *wcoeffs + .get_mut([ + pdim_edge * pdim_edge_minus1.pow(2) + + i * pdim_edge * pdim_edge_minus1 + + k * pdim_edge_minus1 + + j, + 1, + i * pdim_edge.pow(2) + k * pdim_edge + j, + ]) + .unwrap() = T::from(1.0).unwrap(); + *wcoeffs + .get_mut([ + pdim_edge * pdim_edge_minus1.pow(2) * 2 + + j * pdim_edge * pdim_edge_minus1 + + i * pdim_edge + + k, + 2, + j * pdim_edge.pow(2) + i * pdim_edge + k, + ]) + .unwrap() = T::from(1.0).unwrap(); + } + } + } + } + + let mut x = [vec![], vec![], vec![], vec![]]; + let mut m = [vec![], vec![], vec![], vec![]]; + + let vertices = reference_cell::vertices::(cell_type); + + for d in 0..tdim - 1 { + for _ in 0..entity_counts[d] { + x[d].push(rlst_dynamic_array2!(T::Real, [tdim, 0])); + m[d].push(rlst_dynamic_array3!(T, [0, tdim, 0])); + } + } + // DOFs on facets + let facet_q = gauss_jacobi_rule(facet_type, 2 * degree - 1).unwrap(); + let facet_pts_t = facet_q + .points + .iter() + .map(|i| TReal::from(*i).unwrap()) + .collect::>(); + let facet_pts = rlst_array_from_slice2!(&facet_pts_t, [tdim - 1, facet_q.npoints]); + + let mut facet_phi = + rlst_dynamic_array3![T, legendre_shape(facet_type, &facet_pts, degree - 1, 0)]; + tabulate_legendre_polynomials(facet_type, &facet_pts, degree - 1, 0, &mut facet_phi); + + for (facet, normal) in izip!( + reference_cell::facets(cell_type), + reference_cell::facet_normals::(cell_type), + ) { + let mut pts = rlst_dynamic_array2!(T::Real, [tdim, facet_q.npoints]); + let mut mat = rlst_dynamic_array3!(T, [pdim_facet_minus1, tdim, facet_q.npoints]); + + for (w_i, wt) in facet_q.weights.iter().enumerate() { + for d in 0..tdim { + pts[[d, w_i]] = vertices[facet[0]][d] + + (0..tdim - 1) + .map(|x| { + (vertices[facet[usize::pow(2, x as u32)]][d] - vertices[facet[0]][d]) + * facet_pts[[x, w_i]] + }) + .sum::(); + for j in 0..facet_phi.shape()[1] { + mat[[j, d, w_i]] = T::from(*wt).unwrap() + * facet_phi[[0, j, w_i]] + * T::from(normal[d]).unwrap(); + } + } + } + + x[tdim - 1].push(pts); + m[tdim - 1].push(mat); + } + + // DOFs on interior + if degree == 1 { + x[tdim].push(rlst_dynamic_array2!(T::Real, [tdim, 0])); + m[tdim].push(rlst_dynamic_array3!(T, [0, tdim, 0])) + } else if tdim == 2 { + let face_q = gauss_jacobi_rule(ReferenceCellType::Quadrilateral, 2 * degree - 1).unwrap(); + let face_pts_t = face_q + .points + .iter() + .map(|i| TReal::from(*i).unwrap()) + .collect::>(); + let face_pts = rlst_array_from_slice2!(&face_pts_t, [2, face_q.npoints]); + + let mut face_phi = rlst_dynamic_array3![ + T, + legendre_shape(ReferenceCellType::Quadrilateral, &face_pts, degree - 1, 0) + ]; + tabulate_legendre_polynomials( + ReferenceCellType::Quadrilateral, + &face_pts, + degree - 1, + 0, + &mut face_phi, + ); + + let mut pts = rlst_dynamic_array2!(T::Real, [tdim, face_q.npoints]); + let mut mat = rlst_dynamic_array3!( + T, + [ + 2 * pdim_edge_minus2 * pdim_edge_minus1, + tdim, + face_q.npoints + ] + ); + + for (w_i, wt) in face_q.weights.iter().enumerate() { + for i in 0..tdim { + pts[[i, w_i]] = face_pts[[i, w_i]]; + } + for i in 0..pdim_edge_minus2 { + for j in 0..pdim_edge_minus1 { + let index = 2 * (i * pdim_edge_minus1 + j); + mat[[index, 0, w_i]] = + T::from(*wt).unwrap() * face_phi[[0, i * pdim_edge_minus1 + j, w_i]]; + mat[[index + 1, 1, w_i]] = + T::from(*wt).unwrap() * face_phi[[0, j * pdim_edge_minus1 + i, w_i]]; + } + } + } + x[2].push(pts); + m[2].push(mat); + } else { + let interior_q = gauss_jacobi_rule(ReferenceCellType::Hexahedron, 2 * degree - 1).unwrap(); + let interior_pts_t = interior_q + .points + .iter() + .map(|i| TReal::from(*i).unwrap()) + .collect::>(); + let interior_pts = rlst_array_from_slice2!(&interior_pts_t, [3, interior_q.npoints]); + + let mut interior_phi = rlst_dynamic_array3![ + T, + legendre_shape(ReferenceCellType::Hexahedron, &interior_pts, degree - 1, 0) + ]; + tabulate_legendre_polynomials( + ReferenceCellType::Hexahedron, + &interior_pts, + degree - 1, + 0, + &mut interior_phi, + ); + + let mut pts = rlst_dynamic_array2!(T::Real, [tdim, interior_q.npoints]); + let mut mat = rlst_dynamic_array3!( + T, + [ + 3 * pdim_edge_minus1.pow(2) * pdim_edge_minus2, + tdim, + interior_q.npoints + ] + ); + + for (w_i, wt) in interior_q.weights.iter().enumerate() { + for i in 0..tdim { + pts[[i, w_i]] = interior_pts[[i, w_i]]; + } + for i in 0..pdim_edge_minus2 { + for j in 0..pdim_edge_minus1 { + for k in 0..pdim_edge_minus1 { + let index = 3 * (i * pdim_edge_minus1.pow(2) + j * pdim_edge_minus1 + k); + mat[[index, 0, w_i]] = T::from(*wt).unwrap() + * interior_phi[[ + 0, + i * pdim_edge_minus1.pow(2) + j * pdim_edge_minus1 + k, + w_i, + ]]; + mat[[index + 1, 1, w_i]] = T::from(*wt).unwrap() + * interior_phi[[ + 0, + k * pdim_edge_minus1.pow(2) + i * pdim_edge_minus1 + j, + w_i, + ]]; + mat[[index + 2, 2, w_i]] = T::from(*wt).unwrap() + * interior_phi[[ + 0, + j * pdim_edge_minus1.pow(2) + k * pdim_edge_minus1 + i, + w_i, + ]]; + } + } + } + } + x[3].push(pts); + m[3].push(mat); + } + + CiarletElement::create( + "Raviart-Thomas".to_string(), + cell_type, + degree, + vec![tdim], + wcoeffs, + x, + m, + MapType::ContravariantPiola, + continuity, + degree, + ) +} + /// Create a Raviart-Thomas element pub fn create( cell_type: ReferenceCellType, @@ -199,6 +487,10 @@ pub fn create( ) -> CiarletElement { if cell_type == ReferenceCellType::Triangle || cell_type == ReferenceCellType::Tetrahedron { create_simplex(cell_type, degree, continuity) + } else if cell_type == ReferenceCellType::Quadrilateral + || cell_type == ReferenceCellType::Hexahedron + { + create_tp(cell_type, degree, continuity) } else { panic!("Invalid cell: {cell_type:?}"); } diff --git a/src/polynomials.rs b/src/polynomials.rs index fadb1ef..df379a3 100644 --- a/src/polynomials.rs +++ b/src/polynomials.rs @@ -341,7 +341,7 @@ mod test { let mut data = rlst_dynamic_array3!( f64, - legendre_shape(ReferenceCellType::Quadrilateral, &points, degree, 1,) + legendre_shape(ReferenceCellType::Quadrilateral, &points, degree, 1) ); tabulate_legendre_polynomials( ReferenceCellType::Quadrilateral, @@ -360,42 +360,42 @@ mod test { assert_relative_eq!(*data.get([1, 0, k]).unwrap(), 0.0, epsilon = 1e-12); assert_relative_eq!(*data.get([2, 0, k]).unwrap(), 0.0, epsilon = 1e-12); - // 1 => sqrt(3)*(2x - 1) + // 3 => sqrt(3)*(2x - 1) assert_relative_eq!( - *data.get([0, 1, k]).unwrap(), + *data.get([0, 3, k]).unwrap(), f64::sqrt(3.0) * (2.0 * x - 1.0), epsilon = 1e-12 ); assert_relative_eq!( - *data.get([1, 1, k]).unwrap(), + *data.get([1, 3, k]).unwrap(), 2.0 * f64::sqrt(3.0), epsilon = 1e-12 ); - assert_relative_eq!(*data.get([2, 1, k]).unwrap(), 0.0, epsilon = 1e-12); + assert_relative_eq!(*data.get([2, 3, k]).unwrap(), 0.0, epsilon = 1e-12); - // 2 => sqrt(5)*(6x^2 - 6x + 1) + // 6 => sqrt(5)*(6x^2 - 6x + 1) assert_relative_eq!( - *data.get([0, 2, k]).unwrap(), + *data.get([0, 6, k]).unwrap(), f64::sqrt(5.0) * (6.0 * x * x - 6.0 * x + 1.0), epsilon = 1e-12 ); assert_relative_eq!( - *data.get([1, 2, k]).unwrap(), + *data.get([1, 6, k]).unwrap(), f64::sqrt(5.0) * (12.0 * x - 6.0), epsilon = 1e-12 ); - assert_relative_eq!(*data.get([2, 2, k]).unwrap(), 0.0, epsilon = 1e-12); + assert_relative_eq!(*data.get([2, 6, k]).unwrap(), 0.0, epsilon = 1e-12); - // 3 => sqrt(3)*(2y - 1) + // 1 => sqrt(3)*(2y - 1) assert_relative_eq!( - *data.get([0, 3, k]).unwrap(), + *data.get([0, 1, k]).unwrap(), f64::sqrt(3.0) * (2.0 * y - 1.0), epsilon = 1e-12 ); - assert_relative_eq!(*data.get([1, 3, k]).unwrap(), 0.0, epsilon = 1e-12); + assert_relative_eq!(*data.get([1, 1, k]).unwrap(), 0.0, epsilon = 1e-12); assert_relative_eq!( - *data.get([2, 3, k]).unwrap(), + *data.get([2, 1, k]).unwrap(), 2.0 * f64::sqrt(3.0), epsilon = 1e-12 ); @@ -417,49 +417,49 @@ mod test { epsilon = 1e-12 ); - // 5 => sqrt(15)*(6x^2 - 6x + 1)*(2y - 1) + // 7 => sqrt(15)*(6x^2 - 6x + 1)*(2y - 1) assert_relative_eq!( - *data.get([0, 5, k]).unwrap(), + *data.get([0, 7, k]).unwrap(), f64::sqrt(15.0) * (6.0 * x * x - 6.0 * x + 1.0) * (2.0 * y - 1.0), epsilon = 1e-12 ); assert_relative_eq!( - *data.get([1, 5, k]).unwrap(), + *data.get([1, 7, k]).unwrap(), f64::sqrt(15.0) * (12.0 * x - 6.0) * (2.0 * y - 1.0), epsilon = 1e-12 ); assert_relative_eq!( - *data.get([2, 5, k]).unwrap(), + *data.get([2, 7, k]).unwrap(), 2.0 * f64::sqrt(15.0) * (6.0 * x * x - 6.0 * x + 1.0), epsilon = 1e-12 ); - // 6 => sqrt(5)*(6y^2 - 6y + 1) + // 2 => sqrt(5)*(6y^2 - 6y + 1) assert_relative_eq!( - *data.get([0, 6, k]).unwrap(), + *data.get([0, 2, k]).unwrap(), f64::sqrt(5.0) * (6.0 * y * y - 6.0 * y + 1.0), epsilon = 1e-12 ); - assert_relative_eq!(*data.get([1, 6, k]).unwrap(), 0.0, epsilon = 1e-12); + assert_relative_eq!(*data.get([1, 2, k]).unwrap(), 0.0, epsilon = 1e-12); assert_relative_eq!( - *data.get([2, 6, k]).unwrap(), + *data.get([2, 2, k]).unwrap(), f64::sqrt(5.0) * (12.0 * y - 6.0), epsilon = 1e-12 ); - // 7 => sqrt(15)*(2x - 1)*(6y^2 - 6y + 1) + // 5 => sqrt(15)*(2x - 1)*(6y^2 - 6y + 1) assert_relative_eq!( - *data.get([0, 7, k]).unwrap(), + *data.get([0, 5, k]).unwrap(), f64::sqrt(15.0) * (2.0 * x - 1.0) * (6.0 * y * y - 6.0 * y + 1.0), epsilon = 1e-12 ); assert_relative_eq!( - *data.get([1, 7, k]).unwrap(), + *data.get([1, 5, k]).unwrap(), 2.0 * f64::sqrt(15.0) * (6.0 * y * y - 6.0 * y + 1.0), epsilon = 1e-12 ); assert_relative_eq!( - *data.get([2, 7, k]).unwrap(), + *data.get([2, 5, k]).unwrap(), f64::sqrt(15.0) * (2.0 * x - 1.0) * (12.0 * y - 6.0), epsilon = 1e-12 ); diff --git a/src/polynomials/legendre.rs b/src/polynomials/legendre.rs index e388bd1..e5307e2 100644 --- a/src/polynomials/legendre.rs +++ b/src/polynomials/legendre.rs @@ -12,7 +12,7 @@ fn tri_index(i: usize, j: usize) -> usize { } fn quad_index(i: usize, j: usize, n: usize) -> usize { - j * (n + 1) + i + i * (n + 1) + j } fn tet_index(i: usize, j: usize, k: usize) -> usize { @@ -20,7 +20,7 @@ fn tet_index(i: usize, j: usize, k: usize) -> usize { } fn hex_index(i: usize, j: usize, k: usize, n: usize) -> usize { - k * (n + 1) * (n + 1) + j * (n + 1) + i + i * (n + 1) * (n + 1) + j * (n + 1) + k } /// The coefficients in the Jacobi Polynomial recurrence relation diff --git a/src/reference_cell.rs b/src/reference_cell.rs index b590629..4d77d20 100644 --- a/src/reference_cell.rs +++ b/src/reference_cell.rs @@ -98,7 +98,7 @@ pub fn midpoint>(cell: ReferenceCellType) -> Vec { } } -/// The edges of the reference cell +/// The edges (dimension 1 entities) of the reference cell pub fn edges(cell: ReferenceCellType) -> Vec> { match cell { ReferenceCellType::Point => vec![], @@ -151,7 +151,7 @@ pub fn edges(cell: ReferenceCellType) -> Vec> { } } -/// The faces of the reference cell +/// The faces (dimension 2 entities) of the reference cell pub fn faces(cell: ReferenceCellType) -> Vec> { match cell { ReferenceCellType::Point => vec![], @@ -186,6 +186,68 @@ pub fn faces(cell: ReferenceCellType) -> Vec> { } } +/// The volumes (dimension 3 entities) of the reference cell +pub fn volumes(cell: ReferenceCellType) -> Vec> { + match cell { + ReferenceCellType::Point => vec![], + ReferenceCellType::Interval => vec![], + ReferenceCellType::Triangle => vec![], + ReferenceCellType::Quadrilateral => vec![], + ReferenceCellType::Tetrahedron => vec![vec![0, 1, 2, 3]], + ReferenceCellType::Hexahedron => vec![vec![0, 1, 2, 3, 4, 5, 6, 7]], + ReferenceCellType::Prism => vec![vec![0, 1, 2, 3, 4, 5]], + ReferenceCellType::Pyramid => vec![vec![0, 1, 2, 3, 4]], + } +} + +/// The facets (dimension dim-1 entities) of the reference cell +pub fn facets(cell: ReferenceCellType) -> Vec> { + match dim(cell) { + 0 => vec![], + 1 => volumes(cell)[0] + .iter() + .map(|x| vec![*x]) + .collect::>(), + 2 => edges(cell), + 3 => faces(cell), + _ => { + panic!("Invalid dimension"); + } + } +} + +/// The ridges (dimension dim-2 entities) of the reference cell +pub fn ridges(cell: ReferenceCellType) -> Vec> { + match dim(cell) { + 0 => vec![], + 1 => vec![], + 2 => volumes(cell)[0] + .iter() + .map(|x| vec![*x]) + .collect::>(), + 3 => edges(cell), + _ => { + panic!("Invalid dimension"); + } + } +} + +/// The peaks (dimension dim-3 entities) of the reference cell +pub fn peaks(cell: ReferenceCellType) -> Vec> { + match dim(cell) { + 0 => vec![], + 1 => vec![], + 2 => vec![], + 3 => volumes(cell)[0] + .iter() + .map(|x| vec![*x]) + .collect::>(), + _ => { + panic!("Invalid dimension"); + } + } +} + /// The normals to the facets of the reference cell. The length of each normal is the volume of the facet pub fn facet_normals>(cell: ReferenceCellType) -> Vec> { let zero = T::from(0.0).unwrap(); @@ -244,20 +306,6 @@ pub fn facet_unit_normals>(cell: ReferenceCellType) -> V normals } -/// The faces of the reference cell -pub fn volumes(cell: ReferenceCellType) -> Vec> { - match cell { - ReferenceCellType::Point => vec![], - ReferenceCellType::Interval => vec![], - ReferenceCellType::Triangle => vec![], - ReferenceCellType::Quadrilateral => vec![], - ReferenceCellType::Tetrahedron => vec![vec![0, 1, 2, 3]], - ReferenceCellType::Hexahedron => vec![vec![0, 1, 2, 3, 4, 5, 6, 7]], - ReferenceCellType::Prism => vec![vec![0, 1, 2, 3, 4, 5]], - ReferenceCellType::Pyramid => vec![vec![0, 1, 2, 3, 4]], - } -} - /// The types of the subentities of the reference cell pub fn entity_types(cell: ReferenceCellType) -> Vec> { match cell {