-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
62 lines (59 loc) · 1.86 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class InitLearningRate():
def __init__(self,dataset,use_Adam=False,use_default_lr=True):
self.init_lr = {
'karate_34': 1,
'jazz_198': 1,
'lesmis_77': 0.1,
'copperfield_112': 1e-4,
'celeganmetabolic_453': 1e-5,
'celegansneural_297': 1e-2,
'email_1133': 1e-2,
'USAir97_332': 1e-1,
'USairports_1858': 0.1,
'polbooks_105':1e-5
}
self.use_Adam=use_Adam
self.use_default_lr = use_default_lr
self.dataset = dataset
def get_init_lr(self):
if self.use_Adam or self.use_default_lr:
return 1e-3
return self.init_lr[self.dataset]
class Args():
def __init__(self,dataset):
self.init_lr = InitLearningRate(dataset)
self.dataset=dataset
self.args = {
'lr': self.init_lr.get_init_lr(),
'lr_mode': 'scanning',
'grad_direction': 1,
'n_epochs': 150,
'nn_model': 'GCN',
'step_size': 1,
'cuda': 1,
'cache_middle_result': True,
'early_stop':False
}
def setArgs(self,
learning_rate=1e-3,
lr_mode = 'scanning',
grad_direction=-1,
n_epochs=150,
nn_model='GCN',
step_size=1,
cuda=1,
cache_middle_result=True,
early_stop=False):
self.args ={
'lr': learning_rate,
'lr_mode': lr_mode,
'grad_direction': grad_direction,
'n_epochs': n_epochs,
'nn_model': nn_model,
'step_size': step_size,
'cuda': cuda,
'cache_middle_result': cache_middle_result,
'early_stop':early_stop
}
def getArgs(self):
return self.args