forked from pachterlab/picasso
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPicasso.py
406 lines (286 loc) · 10.9 KB
/
Picasso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import torch
from torch import nn, optim
import numpy as np
import anndata
import pandas as pandas
import matplotlib.pyplot as plt
import random
from torchsummary import summary
from collections import Counter
import itertools
from scipy.optimize import linear_sum_assignment
class autoencoder(nn.Module):
"""
Create autoencoder architecture
Returns: autoencoder object
"""
def __init__(self,n_input: int, n_hidden: int, n_output: int, dropout_rate = 0.1):
super(autoencoder,self).__init__()
#Encoder
self.encoder = nn.Sequential(nn.Linear(n_input, n_hidden),
#Parameter value from scVI original tensorflow implementation
nn.BatchNorm1d(n_hidden, momentum=0.01, eps=0.001),
nn.ReLU(True),
nn.Dropout(p=dropout_rate),
nn.Linear(n_hidden, n_output))
#Linear decoder
self.decoder = nn.Linear(n_output, n_input, bias=False)
def forward(self, x):
z = self.encoder(x)
return self.decoder(z), z
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Picasso():
"""
Create object for fitting Picasso model
Returns: Picasso model object
"""
def __init__(self, n_latent = 10, n_hidden = 128, epochs = 100,batch_size = 128, lr = 1e-3, weight_decay=1e-5, seed=None):
#super(NN_NCA, self).__init__()
if seed is not None:
torch.manual_seed(seed)
self.n_latent = n_latent
self.epochs = epochs
self.n_hidden = n_hidden
self.model = None
self.batch_size = batch_size
self.lr = lr
self.weight_decay = weight_decay
self.set_weights = False
self.weights = None
self.Losses = None
self.test_losses = None
def pairwise_dists(self,z1,z2,p=2.0):
"""
Parameters:
z1 : Input matrix 1
z2 : Input matrix 2
p : Distance metric (1=manhattan, 2=euclidean)
Returns :
Pairwise distance matrix between z1 and z2
"""
d1 = z1.clone()
d2 = z2.clone()
dist = torch.cdist(d1, d2, p=p)
#dist = torch.clamp(dist, min=0)
return dist.clone()
def softmax(self, p):
"""
Parameters:
p : n_obs x n_obs probability matrix
Returns :
Softmax of matrix p
"""
#Based on sklearn NCA implementation
#Subtract max prob from each row for numerical stability
p = p.clone()
max_prob, max_indexes = torch.max(p,dim=1,keepdim=True)
p = p - max_prob.expand_as(p)
p = torch.exp(p)
sum_p = torch.sum(p,dim=1,keepdim=True)
p = p / sum_p.expand_as(p)
return p
def lossFunc(self, recon_batch, X_b, z, coord_b, frac):
"""
Parameters:
recon_batch : Reconstruction from decoder for mini-batch
X_b : Mini-batch of X
z : Latent space
coord_b : Coordinates of desired shape
frac : Fraction of Shape-Aware cost in loss calculation
Returns :
Loss value with Shape-Aware and Reconstruction loss
"""
#Reconstruction loss
recon_loss_b = torch.norm(recon_batch-X_b)
#Boundary weights (arbitrary shape fitting)
coord_b = torch.from_numpy(coord_b).float().to(device)
coord_b = torch.transpose(coord_b,0, 1)
#Calculate distances
bound_dists = self.pairwise_dists(z,coord_b) # batch_size x batch_size
# ---- Test task assignment solution ----
# Convert dists to numpy
np_dists = bound_dists.detach().cpu().numpy()
if frac != 0.0:
# Use scipy.optimize.linear_sum_assignment to find matches
row_ind, col_ind = linear_sum_assignment(np_dists)
# Make boolean numpy array
bools = np.full((np_dists.shape[0],np_dists.shape[1]), False)
bools[row_ind,col_ind] = True
else:
bools = np.full((np_dists.shape[0],np_dists.shape[1]), False)
# Import boolean array to torch
bools = torch.from_numpy(bools).bool().to(device)
# Convert to torch
p_sum_bound = torch.sum(bound_dists*bools)
#loss = -1*frac*(p_sum_bound) + (1-frac)*recon_loss_b
loss = 1*frac*(p_sum_bound) + (1-frac)*recon_loss_b
#loss = 1*(p_sum_bound) + 1*recon_loss_b
#return batch_loss
return p_sum_bound, recon_loss_b, loss
def getLoadings(self):
"""
Returns :
Weights from the decoder layer, matrix of n_features x n_hidden
"""
if self.model != None:
return self.model.decoder.weight.detach().cpu().numpy()
else:
return None
def plotLosses(self, figsize=(15,4),fname=None,axisFontSize=11,tickFontSize=10):
"""
Parameters:
figsize : Tuple for figure size
fname : Name for file to save figure to, if None plot is displayed
axisFontSize : Font size for axis labels
tickFontSize : Font size for tick labels
Returns :
Plot of each loss term over epochs
"""
fig, axs = plt.subplots(1, self.Losses.shape[1],figsize=figsize)
titles = ['Boundary Fit','Reconstruction','Total Loss']
if(isinstance(self.test_losses, np.ndarray)):
for i in range(self.Losses.shape[1]):
axs[i].plot(self.Losses[:,i],label='Train Loss')
axs[i].plot(self.test_losses[:,i],label='Test Loss')
axs[i].set_title(titles[i],fontsize=axisFontSize)
plt.setp(axs[i].get_xticklabels(), fontsize=tickFontSize)
plt.setp(axs[i].get_yticklabels(), fontsize=tickFontSize)
axs[i].grid(False)
plt.legend(prop={'size': axisFontSize})
plt.xlabel('Epoch',fontsize=axisFontSize)
plt.ylabel('Loss',fontsize=axisFontSize)
else:
for i in range(self.Losses.shape[1]):
axs[i].plot(self.Losses[:,i])
axs[i].set_title(titles[i],fontsize=axisFontSize)
plt.setp(axs[i].get_xticklabels(), fontsize=tickFontSize)
plt.setp(axs[i].get_yticklabels(), fontsize=tickFontSize)
axs[i].grid(False)
plt.xlabel('Epoch',fontsize=axisFontSize)
plt.ylabel('Loss',fontsize=axisFontSize)
fig.tight_layout()
if(fname != None):
plt.savefig(fname)
else:
plt.show()
def fit(self, X, coords, frac = 0.8, silent = False, ret_loss = False, summ = False):
"""
Parameters:
X : Input data as numpy array (obs x features)
coords : Shape coordinates (dimension x obs)
frac : Fraction of Shape-Aware cost in loss calculation (default is 0.8)
silent : Print average loss per epoch (default is False)
ret_loss : Boolean to return loss values over epochs
summ : Boolean to return summary of neural network
Returns :
Latent space representation of X
"""
iters_per_epoch = int(np.ceil(X.shape[0] / self.batch_size))
model = autoencoder(X.shape[1], self.n_hidden, self.n_latent).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
#Print model summary
if summ:
print("Num Parameters: "+str(sum([param.nelement() for param in model.parameters()])))
summary(model, (self.batch_size,X.shape[1]), self.batch_size)
X = torch.from_numpy(X).float().to(device)
loss_values = []
for e in range(self.epochs):
#Shuffle data
permutation = torch.randperm(X.size()[0])
model.train()
allLosses = torch.tensor(0,device=device)
with torch.autograd.set_detect_anomaly(True):
for b in range(iters_per_epoch):
indices = permutation[b*self.batch_size:(b+1)*self.batch_size]
X_b, coord_b = X[indices], coords
#Set grad to zero, compute loss, take gradient step
optimizer.zero_grad()
recon_batch, z = model(X_b)
losses = self.lossFunc(recon_batch, X_b, z, coord_b, frac) #*****
losses[-1].backward()
allLosses = allLosses + torch.stack(losses,dim=0)
optimizer.step()
if silent != True:
print('====> Epoch: {} Average loss: {:.4f}'.format(e, allLosses[-1].item() / len(X)))
loss_values.append([allLosses[i].item() / len(X) for i in range(len(allLosses))])
model.eval()
recon_batch, z = model(X)
self.model = model
self.Losses = np.array(loss_values)
if ret_loss:
return np.array(loss_values), z.detach().cpu().numpy()
else:
return z.detach().cpu().numpy()
def trainTest(self,X,coords, trainFrac = 0.8, frac = 0.8, silent = False):
"""
Parameters:
X : Input data as numpy array (obs x features)
coords : Shape coordinates (dimension x obs)
trainFrac : Fraction of X to use for training
frac : Fraction of Shape-Aware cost in loss calculation (default is 0.8)
silent : Print average loss per epoch (default is False)
Returns :
Loss values from training and validation batches of X
"""
trainSize = int(np.floor(trainFrac*X.shape[0]))
trainInd = random.sample(range(0,X.shape[0]), trainSize)
testInd = [i not in trainInd for i in range(0,X.shape[0])]
X_train = X[trainInd,:]
X_test = X[testInd,:]
#print(X.shape)
iters_per_epoch = int(np.ceil(X_train.shape[0] / self.batch_size))
model = autoencoder(X_train.shape[1], self.n_hidden, self.n_latent).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
X_train = torch.from_numpy(X_train).float().to(device)
X_test = torch.from_numpy(X_test).float().to(device)
#print(X.size())
loss_values = []
test_loss_values = []
for e in range(self.epochs):
#Shuffle data
permutation = torch.randperm(X_train.size()[0])
model.train()
allLosses = torch.tensor(0,device=device)
with torch.autograd.set_detect_anomaly(True):
for b in range(iters_per_epoch):
#Choose batch
indices = permutation[b*self.batch_size:(b+1)*self.batch_size]
X_b, coord_b = X_train[indices], coords[:,random.sample(range(0, self.batch_size), len(indices))]
#Set grad to zero, compute loss, take gradient step
optimizer.zero_grad()
recon_batch, z = model(X_b)
losses = self.lossFunc(recon_batch, X_b, z, coord_b, frac) #*****
#Get NCA and recons. cost values
#ncaLoss, reconLoss = self.getLossParts(loss, recon_batch, X_b, z, masks,weights,cont, lab_weights, frac)
losses[-1].backward()
allLosses = allLosses + torch.stack(losses,dim=0)
optimizer.step()
test_losses = self.test(model, X_test, coords, frac = frac, silent = silent)
if silent != True:
print('====> Epoch: {} Average loss: {:.4f}'.format(e, allLosses[-1] / len(X_train)))
loss_values.append([allLosses[i].item() / len(X_train) for i in range(len(allLosses))])
test_loss_values.append(test_losses)
self.Losses = np.array(loss_values)
self.test_losses = np.array(test_loss_values)
return np.array(loss_values), np.array(test_loss_values)
def test(self, model, X, coords, frac = 0.8, silent = False):
#Shuffle data
permutation = torch.randperm(X.size()[0])
iters_per_epoch = int(np.ceil(X.size()[0] / self.batch_size))
model.eval()
allLosses = torch.tensor(0,device=device)
with torch.no_grad():
for b in range(iters_per_epoch):
#Choose batch
indices = permutation[b*self.batch_size:(b+1)*self.batch_size]
X_b, coord_b = X[indices], coords[:,random.sample(range(0, self.batch_size), len(indices))]
#Set grad to zero, compute loss, take gradient step
recon_batch, z = model(X_b)
losses = self.lossFunc(recon_batch, X_b, z, coord_b, frac)
#Get NCA and recons. cost values
#ncaLoss, reconLoss = self.getLossParts(loss, recon_batch, X_b, z, masks, weights, cont, lab_weights, frac)
allLosses = allLosses + torch.stack(losses,dim=0)
test_loss = allLosses[-1]/len(X)
if silent != True:
print('====> Test set loss: {:.4f}'.format(test_loss))
return [allLosses[i].item() / len(X) for i in range(len(allLosses))]