-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathML.mo
501 lines (485 loc) · 123 KB
/
ML.mo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
package ML
model MagLev_AVRcl
extends Modelica.Icons.Example;
parameter Real Kp = 15, Td = 0.05, d0 = 0.019;
Components.MagLevNL magLevNL(i0 = 0.27, d0 = d0, d_der0 = 0) annotation (
Placement(visible = true, transformation(origin = {36, 10}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica_Synchronous.ClockSignals.Clocks.PeriodicRealClock periodicClock1(period = 0.0005) annotation (
Placement(transformation(extent = {{-60, -24}, {-50, -14}})));
Components.ControlAVR control(Kp = Kp, Td = Td, h = 0.0005) annotation (
Placement(transformation(extent = {{-20, 0}, {0, 20}})));
Modelica_Synchronous.RealSignals.Sampler.HoldWithDAeffects hold1(quantized = true, shiftCounter = 1, yMax = 1.3, yMin = 0, computationalDelay = true, limited = true) annotation (
Placement(transformation(extent = {{6, 4}, {18, 16}})));
Modelica_Synchronous.RealSignals.Sampler.Sample sample2 annotation (
Placement(transformation(extent = {{-44, 12}, {-32, 24}})));
Modelica_Synchronous.RealSignals.Sampler.SampleWithADeffects sample1(limited = true, quantized = true, yMax = 5, yMin = 0, bits = 10) annotation (
Placement(transformation(extent = {{-62, -6}, {-50, 6}})));
Modelica_Synchronous.RealSignals.Sampler.AssignClock assignClock1 annotation (
Placement(transformation(extent = {{-44, -6}, {-32, 6}})));
Modelica.Blocks.Sources.RealExpression du_set(y = 0) annotation (
Placement(transformation(extent = {{-68, 12}, {-54, 24}})));
equation
connect(hold1.y, magLevNL.v) annotation (
Line(points = {{18.6, 10}, {24, 10}}, color = {0, 0, 127}));
connect(sample1.y, assignClock1.u) annotation (
Line(points = {{-49.4, 0}, {-45.2, 0}}, color = {0, 0, 127}));
connect(assignClock1.y, control.e) annotation (
Line(points = {{-31.4, 0}, {-26, 0}, {-26, 10}, {-22, 10}}, color = {0, 0, 127}));
connect(periodicClock1.y, assignClock1.clock) annotation (
Line(points = {{-49.5, -19}, {-38, -19}, {-38, -7.2}}, color = {175, 175, 175}, pattern = LinePattern.Dot, thickness = 0.5));
connect(control.v, hold1.u) annotation (
Line(points = {{1, 10}, {4.8, 10}}, color = {0, 0, 127}));
connect(sample2.y, control.du_set) annotation (
Line(points = {{-31.4, 18}, {-22, 18}}, color = {0, 0, 127}));
connect(du_set.y, sample2.u) annotation (
Line(points = {{-53.3, 18}, {-45.2, 18}}, color = {0, 0, 127}));
connect(magLevNL.e, sample1.u) annotation (
Line(points = {{47, 10}, {54, 10}, {54, -32}, {-68, -32}, {-68, 0}, {-63.2, 0}}, color = {0, 0, 127}));
end MagLev_AVRcl;
model MagLev_AVRcl_CT
extends Modelica.Icons.Example;
parameter Real Kp = 15, Td = 0.05, d0 = 0.0195;
Components.MagLevNL magLevNL(i0 = 0.27, d0 = d0, d_der0 = 0) annotation (
Placement(visible = true, transformation(origin = {20, 10}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Components.ControlAVR_CT control(Kp = Kp, Td = Td) annotation (
Placement(transformation(extent = {{-20, 0}, {0, 20}})));
Modelica.Blocks.Sources.RealExpression du_set(y = 0) annotation (
Placement(transformation(extent = {{-44, 12}, {-30, 24}})));
equation
connect(magLevNL.e, control.e) annotation (
Line(points = {{31, 10}, {40, 10}, {40, -10}, {-30, -10}, {-30, 10}, {-22, 10}}, color = {0, 0, 127}));
connect(control.v, magLevNL.v) annotation (
Line(points = {{1, 10}, {8, 10}}, color = {0, 0, 127}));
connect(du_set.y, control.du_set) annotation (
Line(points = {{-29.3, 18}, {-22, 18}}, color = {0, 0, 127}));
annotation (
experiment(StartTime = 0, StopTime = 1, Tolerance = 1e-6, Interval = 0.0005));
end MagLev_AVRcl_CT;
model MagLev_AVR_ACG "Model for automatic code generation to Arduino target hardware"
extends Modelica.Icons.Example;
import Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.*;
parameter Real Kp = 15, Td = 0.05, d0 = 0.019;
constant Real v_max = 1.3 "Voltage limitation for coil";
Modelica_Synchronous.ClockSignals.Clocks.PeriodicRealClock periodicClock1(period = 0.0005) annotation (
Placement(transformation(extent = {{-96, -34}, {-86, -24}})));
Components.ControlAVR control(Kp = Kp, Td = Td, h = 0.0005) annotation (
Placement(transformation(extent = {{-40, 0}, {-20, 20}})));
Modelica_Synchronous.RealSignals.Sampler.AssignClock assignClock1 annotation (
Placement(transformation(extent = {{-66, -6}, {-54, 6}})));
Modelica.Blocks.Sources.RealExpression du_set(y = 0) annotation (
Placement(transformation(extent = {{-100, 12}, {-86, 24}})));
inner Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.Microcontroller mcu(desiredPeriod = 0.0005, platform = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Platform.ATmega328P) annotation (
Placement(transformation(extent = {{-80, 40}, {-60, 60}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.PWM pwm(timer = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerSelect.Timer1, prescaler = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerPrescaler.'1/8', timerNumbers = {TimerNumber.A}) annotation (
Placement(transformation(extent = {{80, 0}, {100, 20}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.ADC adc(voltageReference = 5, voltageReferenceSelect = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.VRefSelect.AREF, analogPort = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.AnalogPort.A0) annotation (
Placement(transformation(extent = {{-100, -10}, {-80, 10}})));
Modelica.Blocks.Math.RealToInteger realToInteger annotation (
Placement(transformation(extent = {{50, 0}, {70, 20}})));
Components.Limiter limiter(uMax = v_max, uMin = 0) annotation (
Placement(transformation(extent = {{-10, 0}, {10, 20}})));
Modelica.Blocks.Math.Gain gain(k = 255 / v_max) annotation (
Placement(transformation(extent = {{20, 0}, {40, 20}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.SynchronizeRealtime synchronizeRealtime1(timer = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerSelect.Timer0) annotation (
Placement(visible = true, transformation(origin = {-30, 50}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation
connect(assignClock1.y, control.e) annotation (
Line(points = {{-53.4, 0}, {-48, 0}, {-48, 10}, {-42, 10}}, color = {0, 0, 127}));
connect(periodicClock1.y, assignClock1.clock) annotation (
Line(points = {{-85.5, -29}, {-60, -29}, {-60, -7.2}}, color = {175, 175, 175}, pattern = LinePattern.Dot, thickness = 0.5));
connect(du_set.y, control.du_set) annotation (
Line(points = {{-85.3, 18}, {-42, 18}}, color = {0, 0, 127}));
connect(adc.y, assignClock1.u) annotation (
Line(points = {{-79, 0}, {-67.2, 0}}, color = {0, 0, 127}));
connect(control.v, limiter.u) annotation (
Line(points = {{-19, 10}, {-12, 10}}, color = {0, 0, 127}));
connect(limiter.y, gain.u) annotation (
Line(points = {{11, 10}, {18, 10}}, color = {0, 0, 127}));
connect(gain.y, realToInteger.u) annotation (
Line(points = {{41, 10}, {48, 10}}, color = {0, 0, 127}));
connect(realToInteger.y, pwm.u[1]) annotation (
Line(points = {{71, 10}, {78, 10}}, color = {255, 127, 0}));
annotation (
Diagram(graphics={ Text(extent = {{-86, 96}, {92, 80}}, lineColor = {28, 108, 200}, textString = "Model for automatic code generation to Arduino Uno")}));
end MagLev_AVR_ACG;
model MagLev_AVR_ACG_CT "Continuous-Time model for automatic code generation to Arduino target hardware"
extends Modelica.Icons.Example;
import Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.*;
parameter Real Kp = 15, Td = 0.05, d0 = 0.019;
constant Real v_max = 1.3 "Voltage limitation for coil";
Components.ControlAVR_CT control(Kp = Kp, Td = Td) annotation (
Placement(transformation(extent = {{-40, 0}, {-20, 20}})));
Modelica.Blocks.Sources.RealExpression du_set(y = 0) annotation (
Placement(transformation(extent = {{-100, 12}, {-86, 24}})));
inner Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.Microcontroller mcu(desiredPeriod = 0.0005, platform = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Platform.ATmega328P) annotation (
Placement(transformation(extent = {{-80, 40}, {-60, 60}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.PWM pwm(timer = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerSelect.Timer1, prescaler = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerPrescaler.'1/8', timerNumbers = {TimerNumber.A}) annotation (
Placement(transformation(extent = {{80, 0}, {100, 20}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.ADC adc(voltageReference = 5, voltageReferenceSelect = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.VRefSelect.AREF, analogPort = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.AnalogPort.A0) annotation (
Placement(transformation(extent = {{-100, -10}, {-80, 10}})));
Modelica.Blocks.Math.RealToInteger realToInteger annotation (
Placement(transformation(extent = {{50, 0}, {70, 20}})));
Components.Limiter limiter(uMax = v_max, uMin = 0) annotation (
Placement(transformation(extent = {{-10, 0}, {10, 20}})));
Modelica.Blocks.Math.Gain gain(k = 255 / v_max) annotation (
Placement(transformation(extent = {{20, 0}, {40, 20}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.SynchronizeRealtime synchronizeRealtime1(timer = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerSelect.Timer0) annotation (
Placement(visible = true, transformation(origin = {-30, 50}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation
connect(du_set.y, control.du_set) annotation (
Line(points = {{-85.3, 18}, {-42, 18}}, color = {0, 0, 127}));
connect(control.v, limiter.u) annotation (
Line(points = {{-19, 10}, {-12, 10}}, color = {0, 0, 127}));
connect(limiter.y, gain.u) annotation (
Line(points = {{11, 10}, {18, 10}}, color = {0, 0, 127}));
connect(gain.y, realToInteger.u) annotation (
Line(points = {{41, 10}, {48, 10}}, color = {0, 0, 127}));
connect(realToInteger.y, pwm.u[1]) annotation (
Line(points = {{71, 10}, {78, 10}}, color = {255, 127, 0}));
connect(adc.y, control.e) annotation (
Line(points = {{-79, 0}, {-50, 0}, {-50, 10}, {-42, 10}}, color = {0, 0, 127}));
annotation (
Diagram(graphics={ Text(lineColor = {28, 108, 200}, extent = {{-92, 94}, {92, 80}}, textString = "Continuous-Time model for automatic code generation to Arduino Uno")}, coordinateSystem(initialScale = 0.1)));
end MagLev_AVR_ACG_CT;
model MagLev_AVR_ACG_CT_2_5VTo3_5V "Like MagLevAVR_ACG_CT but for analog preprocessed Hall sensor signal, [2.5V,3.5V] are mapped to [0V,5V]."
extends Modelica.Icons.Example;
import Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.*;
parameter Real Kp = 15, Td = 0.05, d0 = 0.019;
constant Real v_max = 1.3 "Voltage limitation for coil";
Components.ControlAVR_CT control(Kp=15, Td=0.05) annotation (
Placement(transformation(extent = {{-40, 0}, {-20, 20}})));
Modelica.Blocks.Sources.RealExpression du_set(y = 0) annotation (
Placement(transformation(extent = {{-100, 12}, {-86, 24}})));
inner Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.Microcontroller mcu(desiredPeriod = 0.0005, platform = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Platform.ATmega328P) annotation (
Placement(transformation(extent = {{-80, 40}, {-60, 60}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.PWM pwm(timer = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerSelect.Timer1, prescaler = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerPrescaler.'1/8',
timerNumbers={TimerNumber.A,TimerNumber.B}) annotation (
Placement(transformation(extent = {{86, -2}, {106, 18}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.ADC adc(voltageReference = 5, analogPort = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.AnalogPort.A0,
voltageReferenceSelect=Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.VRefSelect.AVCC) annotation (
Placement(transformation(extent = {{-100, -82}, {-80, -62}})));
Modelica.Blocks.Math.RealToInteger realToInteger annotation (
Placement(transformation(extent = {{50, 0}, {70, 20}})));
Components.Limiter limiter(uMax = v_max, uMin = 0) annotation (
Placement(transformation(extent = {{-10, 0}, {10, 20}})));
Modelica.Blocks.Math.Gain gain(k = 255 / v_max) annotation (
Placement(transformation(extent = {{20, 0}, {40, 20}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.SynchronizeRealtime synchronizeRealtime1(timer = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerSelect.Timer0) annotation (
Placement(visible = true, transformation(origin = {-30, 50}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Blocks.Sources.Constant signalOffset(k = 2.47)
"Also 2.48 seems to be a good value" annotation (
Placement(transformation(extent = {{-100, -40}, {-80, -20}})));
Modelica.Blocks.Math.Add add annotation (
Placement(transformation(extent = {{-30, -50}, {-10, -30}})));
Modelica.Blocks.Math.Gain gain1(k=0.22)
"Also 0.23 seems to be a good value" annotation (
Placement(transformation(extent = {{-64, -56}, {-44, -36}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.DigitalWriteBoolean debugLED1(pin=
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Pin.'5', port=
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Port.B) annotation (
Placement(visible=true, transformation(
origin={30,-70},
extent={{-10,-10},{10,10}},
rotation=0)));
Modelica.Blocks.Logical.GreaterThreshold greaterThreshold(threshold = 1) annotation (
Placement(transformation(extent = {{-16, -80}, {4, -60}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.DigitalWriteBoolean debugLED2(pin=
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Pin.'3', port=
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Port.D) annotation (
Placement(visible=true, transformation(
origin={98,-32},
extent={{-10,-10},{10,10}},
rotation=0)));
Modelica.Blocks.Logical.GreaterThreshold greaterThreshold1(threshold=240)
annotation (
Placement(transformation(extent={{50,-30},{70,-10}})));
equation
connect(du_set.y, control.du_set) annotation (
Line(points = {{-85.3, 18}, {-42, 18}}, color = {0, 0, 127}));
connect(control.v, limiter.u) annotation (
Line(points = {{-19, 10}, {-12, 10}}, color = {0, 0, 127}));
connect(limiter.y, gain.u) annotation (
Line(points = {{11, 10}, {18, 10}}, color = {0, 0, 127}));
connect(gain.y, realToInteger.u) annotation (
Line(points = {{41, 10}, {48, 10}}, color = {0, 0, 127}));
connect(adc.y, gain1.u) annotation (
Line(points = {{-79, -72}, {-74, -72}, {-74, -46}, {-66, -46}}, color = {0, 0, 127}));
connect(gain1.y, add.u2) annotation (
Line(points = {{-43, -46}, {-32, -46}}, color = {0, 0, 127}));
connect(signalOffset.y, add.u1) annotation (
Line(points = {{-79, -30}, {-40, -30}, {-40, -34}, {-32, -34}}, color = {0, 0, 127}));
connect(adc.y, greaterThreshold.u) annotation (
Line(points = {{-79, -72}, {-48, -72}, {-48, -70}, {-18, -70}}, color = {0, 0, 127}));
connect(greaterThreshold.y, debugLED1.u)
annotation (Line(points={{5,-70},{18,-70}}, color={255,0,255}));
connect(realToInteger.y, pwm.u[1]) annotation (Line(points={{71,10},{76,10},{76,
7},{84,7}}, color={255,127,0}));
connect(greaterThreshold1.y, debugLED2.u) annotation (Line(points={{71,-20},{80,
-20},{80,-32},{86,-32}}, color={255,0,255}));
connect(realToInteger.y, pwm.u[2])
annotation (Line(points={{71,10},{84,10},{84,9}}, color={255,127,0}));
connect(add.y, control.e) annotation (Line(points={{-9,-40},{-2,-40},{-2,-22},
{-50,-22},{-50,10},{-42,10},{-42,10}}, color={0,0,127}));
connect(greaterThreshold1.u, realToInteger.u) annotation (Line(points={{48,-20},
{44,-20},{44,10},{48,10}}, color={0,0,127}));
annotation (
Diagram(graphics={ Text(lineColor = {28, 108, 200}, extent = {{-92, 94}, {92, 80}}, textString = "Continuous-Time model for automatic code generation to
Arduino Uno with analog preprocessing of Hall sensor signal")}, coordinateSystem(initialScale = 0.1)));
end MagLev_AVR_ACG_CT_2_5VTo3_5V;
model MagLev_AVR_ACG_Workaround_2_5VTo3_5V
"Workaround to get sampled system despite missing code generator support"
extends Modelica.Icons.Example;
import Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.*;
parameter Real Kp = 15, Td = 0.05, d0 = 0.019;
constant Real v_max = 1.3 "Voltage limitation for coil";
Components.ControlAVR_workaround
control(Kp=15, Td=0.05) annotation (
Placement(transformation(extent = {{-40, 0}, {-20, 20}})));
Modelica.Blocks.Sources.RealExpression du_set(y = 0) annotation (
Placement(transformation(extent = {{-100, 12}, {-86, 24}})));
inner Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.Microcontroller mcu(desiredPeriod = 0.0005, platform = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Platform.ATmega328P) annotation (
Placement(transformation(extent = {{-80, 40}, {-60, 60}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.PWM pwm(timer = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerSelect.Timer1, prescaler = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerPrescaler.'1/8',
timerNumbers={TimerNumber.A}) annotation (
Placement(transformation(extent = {{86, -2}, {106, 18}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.ADC adc(voltageReference = 5, analogPort = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.AnalogPort.A0,
voltageReferenceSelect=Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.VRefSelect.AVCC) annotation (
Placement(transformation(extent = {{-100, -82}, {-80, -62}})));
Modelica.Blocks.Math.RealToInteger realToInteger annotation (
Placement(transformation(extent = {{50, 0}, {70, 20}})));
Components.Limiter limiter(uMax = v_max, uMin = 0) annotation (
Placement(transformation(extent = {{-10, 0}, {10, 20}})));
Modelica.Blocks.Math.Gain gain(k = 255 / v_max) annotation (
Placement(transformation(extent = {{20, 0}, {40, 20}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.SynchronizeRealtime synchronizeRealtime1(timer = Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.TimerSelect.Timer0) annotation (
Placement(visible = true, transformation(origin = {-30, 50}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Blocks.Sources.Constant signalOffset(k=2.47)
"Also 2.48 seems to be a good value" annotation (
Placement(transformation(extent = {{-100, -40}, {-80, -20}})));
Modelica.Blocks.Math.Add add annotation (
Placement(transformation(extent = {{-30, -50}, {-10, -30}})));
Modelica.Blocks.Math.Gain gain1(k=0.22)
"Also 0.23 seems to be a good value" annotation (
Placement(transformation(extent = {{-64, -56}, {-44, -36}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.DigitalWriteBoolean debugLED1(pin=
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Pin.'5', port=
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Port.B) annotation (
Placement(visible=true, transformation(
origin={30,-70},
extent={{-10,-10},{10,10}},
rotation=0)));
Modelica.Blocks.Logical.GreaterThreshold greaterThreshold(threshold=20) annotation (
Placement(transformation(extent = {{-16, -80}, {4, -60}})));
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.DigitalWriteBoolean debugLED2(pin=
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Pin.'3', port=
Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Port.D) annotation (
Placement(visible=true, transformation(
origin={98,-32},
extent={{-10,-10},{10,10}},
rotation=0)));
Modelica.Blocks.Logical.GreaterThreshold greaterThreshold1(threshold=240)
annotation (
Placement(transformation(extent={{50,-30},{70,-10}})));
Modelica.Blocks.Sources.RealExpression du_set1(y=time)
annotation (
Placement(transformation(extent={{-48,-76},{-34,-64}})));
equation
connect(du_set.y, control.du_set) annotation (
Line(points = {{-85.3, 18}, {-42, 18}}, color = {0, 0, 127}));
connect(control.v, limiter.u) annotation (
Line(points = {{-19, 10}, {-12, 10}}, color = {0, 0, 127}));
connect(limiter.y, gain.u) annotation (
Line(points = {{11, 10}, {18, 10}}, color = {0, 0, 127}));
connect(gain.y, realToInteger.u) annotation (
Line(points = {{41, 10}, {48, 10}}, color = {0, 0, 127}));
connect(adc.y, gain1.u) annotation (
Line(points = {{-79, -72}, {-74, -72}, {-74, -46}, {-66, -46}}, color = {0, 0, 127}));
connect(gain1.y, add.u2) annotation (
Line(points = {{-43, -46}, {-32, -46}}, color = {0, 0, 127}));
connect(signalOffset.y, add.u1) annotation (
Line(points = {{-79, -30}, {-40, -30}, {-40, -34}, {-32, -34}}, color = {0, 0, 127}));
connect(greaterThreshold.y, debugLED1.u)
annotation (Line(points={{5,-70},{18,-70}}, color={255,0,255}));
connect(greaterThreshold1.y, debugLED2.u) annotation (Line(points={{71,-20},{80,
-20},{80,-32},{86,-32}}, color={255,0,255}));
connect(add.y, control.e) annotation (Line(points={{-9,-40},{-2,-40},{-2,-22},
{-50,-22},{-50,10},{-42,10},{-42,10}}, color={0,0,127}));
connect(greaterThreshold1.u, realToInteger.u) annotation (Line(points={{48,-20},
{44,-20},{44,10},{48,10}}, color={0,0,127}));
connect(realToInteger.y, pwm.u[1]) annotation (Line(points={{71,10},{76,10},{76,
8},{84,8}}, color={255,127,0}));
connect(du_set1.y, greaterThreshold.u)
annotation (Line(points={{-33.3,-70},{-18,-70}}, color={0,0,127}));
annotation (
Diagram(graphics={ Text(lineColor={28,108,200}, extent={{-90,94},{94,80}},
textString="Workaround to get sampled system behaviour despite missing support in code generator.
Arduino Uno with analog preprocessing of Hall sensor signal."),
Rectangle(extent={{50,-88},{-52,-54}}, lineColor={238,46,47}),
Text(
extent={{54,-68},{86,-76}},
lineColor={238,46,47},
textString="Check real-time")}, coordinateSystem(initialScale = 0.1)));
end MagLev_AVR_ACG_Workaround_2_5VTo3_5V;
package Components
model MagLevNL
extends Modelica.Blocks.Interfaces.BlockIcon;
extends MagLevSchematicsIcon;
import Modelica.Blocks.Interfaces.*;
parameter Real R = 2.41, L = 15.03e-3, m = 3.02e-3, k = 17.31e-9, alpha = 2.44, beta = 1.12e-4, gamma = 0.26;
RealInput v annotation (
Placement(transformation(extent = {{-140, -20}, {-100, 20}})));
RealOutput e annotation (
Placement(transformation(extent = {{100, -10}, {120, 10}})));
parameter Real i0, d0, d_der0;
Real i(start = i0, fixed = true), d(start = d0, fixed = true), d_der(start = d_der0, fixed = true), f;
constant Real g = 9.81;
equation
f = k * i / d ^ 4;
e = alpha + beta * 1 / d ^ 2 + gamma * i;
der(d) = d_der;
m * der(d_der) = m * g - f;
v = R * i + L * der(i);
end MagLevNL;
block ControlAVR "Digital controller for the MagLev system"
extends Modelica.Blocks.Interfaces.BlockIcon;
extends ArduinoIcon;
import Modelica.Blocks.Interfaces.*;
parameter Real Kp = 15, Td = 0.05, Nd = 5, h = 0.0005, u_e = 0.66, y_e = 2.79;
RealInput du_set(final unit = "V") "Desired setpoint OP delta voltage of PD controller" annotation (
Placement(transformation(extent = {{-140, 60}, {-100, 100}})));
RealInput e(final unit = "V") "Measured voltage across the hall effect sensor" annotation (
Placement(transformation(extent = {{-140, -20}, {-100, 20}})));
RealOutput v(final unit = "V") "Output voltage to the electromagnet" annotation (
Placement(transformation(extent = {{100, -10}, {120, 10}})));
protected
Real Dpart(start = 0);
Real dy_e "OP delta e Hall sensor voltage";
Real du(start = 0) "OP delta u input to PD(T1) control law";
Real dy "OP delta v output voltage to the electromagnet";
Real ad, bd;
equation
// Measured delta voltage at OP
dy_e = e - y_e;
// input to PD(T1) control law
du = du_set - dy_e;
/* Discrete-time version of approximated derivative block (y=k*s*Td/(Td*s+1) * u).
Discretized using backward-differences (s->(z-1)/(h*z)) */
ad = Td / (Td + Nd * h);
bd = Td * Nd / (Td + Nd * h);
Dpart = ad * previous(Dpart) + bd * (du - previous(du));
// Standard form of the PD controller with gain applied to P and D part
dy = Kp * (du + Dpart);
// Output voltage to electromagnet
v = dy + u_e;
annotation (
Icon(graphics={Text(extent = {{-100, -68}, {100, -98}}, lineColor = {28, 108, 200}, textString = "h=%h s")}));
end ControlAVR;
block ControlAVR_workaround
"Workaround to get sampled system despite missing code generator support"
extends Modelica.Blocks.Interfaces.BlockIcon;
extends ArduinoIcon;
import Modelica.Blocks.Interfaces.*;
parameter Real Kp = 15, Td = 0.05, Nd = 5, h = 0.0005, u_e = 0.66, y_e = 2.79;
RealInput du_set(final unit = "V") "Desired setpoint OP delta voltage of PD controller" annotation (
Placement(transformation(extent = {{-140, 60}, {-100, 100}})));
RealInput e(final unit = "V") "Measured voltage across the hall effect sensor" annotation (
Placement(transformation(extent = {{-140, -20}, {-100, 20}})));
RealOutput v(final unit = "V") "Output voltage to the electromagnet" annotation (
Placement(transformation(extent = {{100, -10}, {120, 10}})));
protected
discrete Real Dpart(start=0,fixed=true);
discrete Real Dpart_pre(start=0,fixed=true) "Previous value of Dpart";
discrete Real dy_e(start=0,fixed=true) "OP delta e Hall sensor voltage";
discrete Real du(start=0,fixed=true) "OP delta u input to PD(T1) control law";
discrete Real du_pre(start=0,fixed=true) "Previous value of du";
discrete Real dy(start=0,fixed=true) "OP delta v output voltage to the electromagnet";
discrete Real ad(start=0,fixed=true), bd(start=0,fixed=true);
// discrete Real lastRefresh(start=-10.0, fixed=true);
algorithm
// if time-lastRefresh >= h then // We don't support sample(), or events... yet
// Measured delta voltage at OP
dy_e :=e - y_e;
// input to PD(T1) control law
du :=du_set - dy_e;
/* Discrete-time version of approximated derivative block (y=k*s*Td/(Td*s+1) * u).
Discretized using backward-differences (s->(z-1)/(h*z)) */
ad :=Td/(Td + Nd*h);
bd :=Td*Nd/(Td + Nd*h);
Dpart :=ad*Dpart_pre + bd*(du - du_pre);
// Standard form of the PD controller with gain applied to P and D part
dy :=Kp*(du + Dpart);
// Output voltage to electromagnet
v :=dy + u_e;
Dpart_pre := Dpart;
du_pre := du;
// lastRefresh := time;
// end if;
annotation (
Icon(graphics={ Text(extent = {{-100, -68}, {100, -98}}, lineColor={0,0,0},textString = "h=%h s")}));
end ControlAVR_workaround;
model Limiter
extends Modelica.Blocks.Interfaces.SISO;
parameter Real uMax(start = 1) "Upper limits of input signals";
parameter Real uMin = -uMax "Lower limits of input signals";
equation
y = if u > uMax then uMax else if u < uMin then uMin else u;
annotation (
Icon(coordinateSystem(preserveAspectRatio = false), graphics={ Line(points = {{0, -90}, {0, 68}}, color = {192, 192, 192}), Polygon(points = {{0, 90}, {-8, 68}, {8, 68}, {0, 90}}, lineColor = {192, 192, 192}, fillColor = {192, 192, 192},
fillPattern = FillPattern.Solid), Line(points = {{-90, 0}, {68, 0}}, color = {192, 192, 192}), Polygon(points = {{90, 0}, {68, -8}, {68, 8}, {90, 0}}, lineColor = {192, 192, 192}, fillColor = {192, 192, 192},
fillPattern = FillPattern.Solid), Line(points = {{-80, -70}, {-50, -70}, {50, 70}, {80, 70}}), Text(extent = {{-150, -150}, {150, -110}}, lineColor = {0, 0, 0}, textString = "uMax=%uMax")}),
Diagram(coordinateSystem(preserveAspectRatio = false), graphics = {Line(points = {{0, -60}, {0, 50}}, color = {192, 192, 192}), Polygon(points = {{0, 60}, {-5, 50}, {5, 50}, {0, 60}}, lineColor = {192, 192, 192}, fillColor = {192, 192, 192}, fillPattern = FillPattern.Solid), Line(points = {{-60, 0}, {50, 0}}, color = {192, 192, 192}), Polygon(points = {{60, 0}, {50, -5}, {50, 5}, {60, 0}}, lineColor = {192, 192, 192}, fillColor = {192, 192, 192}, fillPattern = FillPattern.Solid), Line(points = {{-50, -40}, {-30, -40}, {30, 40}, {50, 40}}), Text(extent = {{46, -6}, {68, -18}}, lineColor = {128, 128, 128}, textString = "u"), Text(extent = {{-30, 70}, {-5, 50}}, lineColor = {128, 128, 128}, textString = "y"), Text(extent = {{-58, -54}, {-28, -42}}, lineColor = {128, 128, 128}, textString = "uMin"), Text(extent = {{26, 40}, {66, 56}}, lineColor = {128, 128, 128}, textString = "uMax")}));
end Limiter;
block ControlAVR_CT "Continous-time version of ControlAVR"
extends Modelica.Blocks.Interfaces.BlockIcon;
extends ArduinoIcon;
import Modelica.Blocks.Interfaces.*;
parameter Real Kp = 15, Td = 0.05, Nd = 5, u_e = 0.66, y_e = 2.79;
RealInput du_set(final unit = "V") "Desired setpoint OP delta voltage of PD controller" annotation (
Placement(transformation(extent = {{-140, 60}, {-100, 100}})));
RealInput e(final unit = "V") "Measured voltage across the hall effect sensor" annotation (
Placement(transformation(extent = {{-140, -20}, {-100, 20}})));
RealOutput v(final unit = "V") "Output voltage to the electromagnet" annotation (
Placement(transformation(extent = {{100, -10}, {120, 10}})));
protected
Real dy_e "OP delta e Hall sensor voltage";
Real du(start = 0) "OP delta u input to PD(T1) control law";
Real dy "OP delta v output voltage to the electromagnet";
Real x_scaled;
equation
// Measured delta voltage at OP
dy_e = e - y_e;
// input to PD(T1) control law
du = du_set - dy_e;
// PD(T1) equations
der(x_scaled) = (-Nd / Td * x_scaled) + du;
dy = (-Kp * Nd ^ 2 / Td) * x_scaled + (Kp + Kp * Nd) * du;
// Output voltage to electromagnet
v = dy + u_e;
annotation (
Icon(graphics={ Text(lineColor = {28, 108, 200}, extent = {{-100, -68}, {100, -98}}, textString = "Continuous-Time")}, coordinateSystem(initialScale = 0.1)));
end ControlAVR_CT;
partial block ArduinoIcon
annotation (Icon(coordinateSystem(preserveAspectRatio=false), graphics={
Bitmap(extent = {{-88, -80}, {90, 90}},
imageSource=
"/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAJYAlgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoormNe8aWelTPY2aG/1IDmCNsLF7yN0X6cn2pN2A6C8vLbT7SS6vJ44IIxl5JGwAK8917xtf6jA0Wjb7C0b5ReyJ+9kzxlEP3R7nn0ArhfFJ1/xNIbl9Qaa4tnDC1j+SOPv8i+o9TkmuG1zXNZ1ExpJcsrRkbkUbCWHc471OrKtY9k8O+Pr7w3dJo/i92ktmO221Ucgj0k/wAfz9a9VjkSaNZI3V0YBlZTkMPUGvmr+09b1zSorHVJIUgKgSbYx5kmOhPp+Fe1fDWJYPBVtEmRGskgQE5wNx4poGddRRRVEhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFISFBJIAHJJoAWqOq6xYaJZm61G5SCIcDceXPoo6k+wrlNZ+IUHmSWfh5Y764Q7JLpj/o8J+o5c+y8e9eXa7bXHiK5nuH1Y3Op2zAHzH+XkZwoHCe2PxqW+w7HY+JfGup6layLbmTSdPPy5LAXEmTjk9Ix7DJ968xvYdV8NSzfZZ3NtP0mUZwx7nPRvfvWBrZ1S8aO1uZpzJCceTJn8/8A69bEFzqc2nR2N3eNNEo5j/vD/aPelYZnaHca1Z6nPdRXRPmH948p3Bz6n3rdSFpp3uZ3824fAaRgMn6DtVZE2MAeCOg7Crvm7UHenYC9GNi8nNe0fD0f8UbaN/eaQ/8AjxrxGGTzIs17n4DTb4K033Rm/NjQtwZ0dFFFUSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRVa/1C00yzku765itreMZaSVgoFecan8Q7jXY5k8PyrZ2CEpJfSAGZv9xD9wf7TfgKTdhpHY+IvF+keGkVbyffdycQ2kRBkkPbjsPc4FeZ+KvE19qNtu1m8is7KRwi6dFIVVgT/y0fq59hhfrXKzafpviRr42N3vvYX/AHkrSGQycclz1PPeuN1ayvZ7oQXDy+fAdh3vuCj+VTuPY6HWdIvdC86fT55W02Rdnmo2CoP8LY/mK5zSLa8sL1rmG7aHIIDd3HuK0rY3ItI7Z7qWaKPhVdiVX6CjbiQkn8T3qkhNkpSWUGZnZyfvO5yzfjU1uduBlQO+DTS5MQXOPSkhcHqOelMCU4MhYDvxSySfu8nIPtUG4l+pxU0rKEz2xzmgCWCfCgk/hX0F4DdZfBGlMpBHlH/0I183NOqqAvLGuj8IeNtQ8MXIWI+basf3tux+U+49D71pToynflMateNO3MfSNFZOgeItO8R2C3VhMG/vxnh4z6Ef1rWrNpp2ZommroKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVl6/r9h4a0mTUdSkdYFIUBELMzHoAB34oA1K4bxJ8TNJ0q7GmadLBe6m7bMGXbDEf9t/6Dn6Vxuq+OZvE1m89xfJp2jDIa2ilxIw9JX68/wB1fzNcxa2+jeL9HnFtJFFcW7kQsE2lF7Bl/unsam9yrGj4k1eB762k8S6nFe3Msm0RHiKFTwdqD7v+8cn3rlvEnh9tIDTWdwzaddcAbvmA7D/aHoa56+0tpb10ncb4ztkdW3K2PQ9/wq7CdiIgd2VF2qztkqPb0FCQXKum2L2ExnW5ljc8ARnDYPY4rRkUeXg4A7Kv9fU1Ah2k44HrU7KDGGIqrEjo8A99o7ZoHLYxnvzQnJwePrUefm74+tMCyP8AV8dD39KRB8ynJIHSkwPKPamNcLGQP4uwHrQlcL9yR2xIc9j+FRSyGUbU+7nk1ExMpJZmA9BW94Z8OvrF0JJ45ItKiybi53BFjGOzHgn2rrhhuVc9TY454rmfJS1ZR0XRLrWtSS0s13zsCxZjhUUdSfat7V/AJsNOm1KLU0kjt3An3RlQAeMrzzVGcz+FdbSXS9ThuAybop4SCHQ9mXt7itGw8QLrlzLD4jvLGPTlXaLVkaMZP8abRww9TW8udWcPhOdckvdqfEYmia7caFqaXNlcSQMrEbiM7l916EH0Ne7+D/Hdj4ngWGQrb6gB80JPD+6+v06145rei2mqaha2Xhby7yOzsC800Y27iCSSx7tjFc3Bc3FlcKQZIpom75VlP9DQ6Ea0b397+tyPbyw83Ze7/Wx9a0V5j4I+JsV+I9P1uQJcfdjuTwH9m9D716aCCMggg968+cJQlyyR6dOrCrHmg9BaKKKg0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKazKilmIVQMkk4AFYfiHxdpnh0LDOz3F9KMw2NuN80nvj+Ff9psD3rxbxV471jUNZhh8RWDQ6FKNyWVvMdkq56u4/wBZjHK8DjpSbHY9F174jTyR3EHg6wXVriEHfcucW+R1VCDmVuvC8e56Vzmv/EDTfGPgaMwYt9SiuVFxYyt86YVskf3l9/zxXC3nxNaz1y0TT9MB0+2bDIflaRcfwY4XHao/F2paPrl9b6no9tcWt6RumuGUKr+23+JvVhx9aW49EYd7DFO0giAVW5MeeD6Yqra2UdgrYkYyMMN82Bj0PrTrl8zIQMBiPxp7jJ/zzTSE2NLFup6fhipY8heOM8ioyvPPJqdBzmqJGockgjpVgklFHY9zUQjy+B19KsPwvHNAxIhxzSZUZPQjoaY8ijoeW4Ue9NmgAkeJmZtgBYqMKSewPerhTcml3M51FCLb6D3m3YCsPQ1Z0jRrnWNTSysUEtzICQXYAADkk+grodE8HwPpv9qaxIYrN7dpraCGVRLPtPOM8Dj8TWPfNDouspLoeqGeNVWSK4T5XTI+63uOhrvpQhG8Yay7nn1p1JWlU0j26mxN4a0qPRJMa5YDVYCzMiz7o5lH8I44YfrWI2uX76ENGaXdYh/NSMjlW9j6e1U7y+nv7yW7uWDzyHLPtC5P0HFRD610Rpu3vu5yzrK/7tW/U9Burzwr9gNraWenG8htUcSSRsyTuV+ZcryHB/A1xeqaHqOmRW9xd2zxxXMYlRscAHoD6H2rRg0zWdFii1q12+VHg/aLeRZAmezY+7npzXQXfijTtXsJLqeCe+1qUrEmlyszW4YjHmRoOpHoeQaxjem/c1X9fcdE0qqtP3X0/rqY/hbxfNpKLpl5JJ/ZUjjeYTtkiGcnaRzgnGe+OlbPiG0svFs3m6DaZW0QC61WZzFb7QPu5bkn3PNZMegab4cRbjxRIZLsgNHpFu/7w+nmt/APbrWZrXiO+1tY4ZPLtrGH/UWVuNsUY+nc+5qlTUqnPT+/p/wfyM3VcKXJW18uv/A/My43KHg16T4J+JU+leXYaqzT2XRX6tF/iK80q1b+QImaQkvuAC9Bjua3xFOEoe8vu3OXDznGp+7dvXb5n1VaXdvfWyXFrMksLjKuhyDU9fMekeLNZ0AsumXzxxk5KMAyn8DXQR/FnxQgAaS1c+phH9K854GqnpqepHMaNve0Z75RXiEPxd8Q4y1tYuPUoR/Wuo8OfFGK+ufs+sQx2xbG2aLOwf72en1rKWEqxV2jWONoSaSZ6PUc88VrBJPPIscUalndjgACsvVtdTTpLOGGJbia7b5Bv2rsGCzbsHt0HeovFk4XwdqUyHI+zlh79K5r3djr6XNSxvFvrRLhY5Iw3OyUYYDtke45/GrNZPh12k0mB3JLGKPOf90VcF/bnUTp4djcCLzSoQ4C5xy2MZ9s5pJ6XY2tS1RRRVCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5LX/HljpdxLp+nJ/aWqRj54Y2xHAf8AprJ0X6ct7UXA6a8vbXTrSS7vbiO3t4hueWVgqqPcmvLvGHxH1ifT518KWMiQBCxv5o/nZe7RRnkj/aYfQd64LWPF2sN4rY+L7dZjH80EAyIIB2eNejf7xyfpVG2+Jc8XjGO6ewP2CNTE8StmTaT9/PTPt0IqWMI/HVvYaRLPBp7SanMczzSSlzK3993PzMParOm+ONP1nwjJpOu6RJczx8xeRhd/+0Cf9WR69DWR4kfStU1eS802zks7eXJdeAZj/eC/wZ7/AMqz1IK+WuFjHO1e/wBfWmo3BshW3jiY7sTP2J+6Bn9f5VZdiRufknqx702UkKoIAx3ppb5T/KrSJKd0376MDjJGParZHPJ+lZd05GorE3YrWsqksxJ+lIYGMgjPQ1ZgjweQeaVUyuO3pTZZVjwBkknHFNJydkJtJXYrkAsOh7+1MMokH7snHQt6/SmMnmljJyD/AAg12+g+Dg1jc3+qWsk9ulmLm2S2mVUmGeQZOisP7tdcaEaa5qv3HFLESqPlo/ecvoug3Ot6ktlYqhncFt0jgBVHUk/4V1ninwlp+j6GtzZTvJPFIFuDLOBuGMZROpGe9ctrKadBqGdHuZpbR41dTIpV0JHKE98eorNOScnk+tdihKTUouy7WOGVWMFKMleXe5aOqXzaadNNzI1kXD+QTlQ3qPT8K0JNZt7zQFsL2zD3UBza3cIVCo/uOMfMO/rWMqF5FVRyxAA9zXc+GfB9rc3l1aai7vqVpMEfTonVSF4zIWPDAegqqrpwV366E0Pa1HZempzujeGtU10SNp9sJFTgszBVLYztBPVvaupvfB2m6BBPf3An1O3ihjY2ySCN43br5pHRPQjvxWta+KtDtZL7T9O0pprs3G2OC0jKrd843LjlD356dqxdXax0+/kv/EhjvNWdQBpVo+1Fx0+0OOCfUDrXO6lScrbLt1f9dzqVGlThfd9+i/rsQaMdR1HUNT1i3trLTNKuIWt7iWXKW0aEYwB/GwxkAd6qSeIrHQontfCsTrKw2y6tcL+/kHcRj/lmv61k6zr2oa7KhvJFWGLiG2iXZFCPRVHH49azK6Y0L6z+7/Puck8TbSH3/wCXYVmeR2d2Z3Y5ZmOST6k0gpcUV0JHI3cWlFJSiqJFFTIrMuIgzyHqqjOF9T7U1o5YGQyxMm5dyh1I3L6jPUUsV01tcpMCcZw4XjcO4qZN2bRUIpzSloTyywaYyiVBPLj5gWworR03UrW6f95biLAwGifkfn1r1Xwh8PfDVxpdvqt2INYnnUOJX5iT/ZVenHQ5547dK6S98CeGb6Io2j2sLY4kt0ETL7grivnZ1q8nzczTPpI4ahFcvKrHjl7e3kOivbR3RnjjQmFdxBVSeceg9q9a1i5trz4dzPaTJNEbdEVlPfKjB9D7V5T4w0ldBnvbK3vvtMSL99cAqT/A+O4/r2rK0DxLi6k0i1lllF2o3YcLFuXn5s9enUUlqpVJuz/MrWHJTgrr8j3nwnPJcaLG0trNbMn7sLKVJcKAN4wT8p7d6zPD+pXd34k163lkJit74RxgjoMZxXK6B8Q9O0TUEttXuHEd3J5McpbK24AyN3opLHn8/UaXhW8WPxt4gjkimC3ept5EgQsjbEG7LDgdRjPWsL6I36s9CurqCxtZbq5lWKCJSzu3RQKfFIk0SSxtuR1DKfUGuY8c6lNp1hpxgYAzXyRNkZ4Ib/61dFZFjb5Y5O4/zrS/vWJtpcsUUUVQgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimsyorOzBVAySTgAUAOrM1rXtM8PWf2rU7pYUY7Y05Z5W/uoo5Y+wrkta+IclyJLTwjbxahcZKfbZW22ysOyn/lo30+X3ryK08Zz2ur6hceI7Wa51cBlEsnEikdIgOka/7oqbjsdZ488d+KL6wMmn2cunaMHCz7X/0lgenmFf8AVKfY59SK4rU/HiWmhQ2uiabHakg7j1SI+w/iJ9TT/C3xCkTXr46lpontb4eWYoB/q/bB+8D0OeaxtTtrSTUp5ra0NpbMx2Wgk3bfX5vTPYdPWhK4HQ6h4xsfEvhGC2vtIc6tGMLMGCpEcffVuuD3SuThhSA4HzPn75H8h2qwgAUZGFHQAYH5UkxzNzwOMdqtKxLZIoG2QEE57k1Cm7PYfXvU0YOGA496jj6nIOPpTAdMQoAPIx2qA8Aj+dWplBRcEYx1qu/yjBPSgDHvQRrC4GMlP5Ct1pFiB56c81ky2sk94kwcbRt6+1anlpkNIAx7D0rop4ac9dkctXFwp6bsd5zSIGUYU9DWhomhXGs3EkNkqvJGokddwEjrnnYD95h1xW7L4RsNPsLW/wBY1xEtrld0X2GBpt3tu4UEelc7fGzjv2OmS3Jtlx5bzALJn/gPSuylGCVqe/exw1pVObmrbdrnb+KvCui6Noss0SS29wuz7KZJt8l0D94tHj93iuFF7dCzayW4lFoz72hDnYW9cVb0rXL/AEnVEv4ZmklHDrKd4lXujZ6g0j251rWhDpOmmJ7hv3dpHIXwe+Ce3f2FXThKGk9etzOrONTWno9rFh9ea60AaXfWy3JhObS5LbXg7FeB8y+xpmnaFcXIt7m7Sa00uWTY18YS6J78dq6i00XRvB+p2y+KIZby5kCuqQrugiU9S398g44HGK1LHWr3QZLzQLApq00+bjS2slDxqHPKumflXvg9KzdWyapL+utjZUOZp1nt/SucpqHgXWLBrqXZFJYwR+cL0SARSJ22nPLH061qafJqesWCapqYs7CG3CpHr0waOcY6BApHmtjjpTtV1Cy0yTOsPBquoo2+PSbVtthaMe7YOGb/AGRxWOYda8YTPqOo3SQ2NvhWup/kgtlP3QqjtkY4H1prmnG87ev+Xf8ALyYWhTlane/b/Ptb7/NE1x4mS1V7DwvBNb/aDtmv5fmu7ok+v8AJ7CqbeGJLSNn1bULTTpCsh8mVi829cfKyjlSc5BPWp31yy0aJ7fw7C6SMpSXULgAyuCMOijoEzyD1q0ljpWg6TZ6rrcEmqalqKedb2jyFY0j6B5G6sT2FWrwXuq1/vf8AkZu02+Z3t8or/MoDR9Bkl8uLxOgBlVQ8to6rs25Zj9D8uO9Vrzw7fWll9uTybqzCK7zWzh1jDHCh/wC6x9K14NZ8M6ofs+raBFpqtwt5prMDGfVkOdwqveWuqeBtZguLS7SSKRfOtbmMBop0PGcHIzg/hVKU07deztr6NEShTa5rad1fT1TOboGSQBkk8AAcmt7xNY2ogsta0+EwWWoKT5XJEUq8MoY8t65xjmup+Gmm29vZ/wBr31sha7bbYzsMgAZDD2bNTXxkKNL2j+4KGCnVq8l9O/8AXc8+ntLi0cJcQyRscEKy8mu/8FeEtOu7Ow1WTffTSSsjQiMPDAR0Ew64PXPQcV0viT+yrHSZGv5IoVBbyhgZD9flA5x615Z4h1G0kv1vfD4vYNOniCMzSYMj9wQp4Hsa4aWNqYn3H7p3ywVPDfvPiOs8a+KdDvNO/sm3sEnliBWKUMVNmwbBUH+NeOMcV53vHSoPMBHyjJ9PSmNIR/H+Qr06UFSjyo8ytOVaXNJGxpWvatoTs+lalPa7jllRsq31U8GtS++I/iq6tXFzrkqQhfm8lFjZvbKgGuRZ32B85BOAcdTSiZZLaS3mjVo3YEso+dcdCD/SsMRyKLmoq50Yb2jmoOTsb4luLnwbEBGYzLKzl2bduTnnHUsax/C2nHUNbjiVtoIILHp06GoHe1tljC6mwaIYRVzwfX9a3/B4WHUipRkVA2Wb75OOuK8aUm23I9uMUkkijrC2ceo3TXfnOkUwVY41A3EAdWPbA6d69W8F69NNFLqFwNkMsb3TRoOAoO7av4D868i1pJZpZVnUJLJMzFAfu56Z98V6JbXTf8ITAS8caxaY1uM8BcZBJx65qN2kVsdZ4y8QWGv6R4VvtKuVntrrVYgrDqPlOVI7Eehr0Wz/AOPYe5P8zXzJ4Y1GzhfS9KgZpI4NWW+muHTaThQgXHoAM19D6H4i0rVLm702zvY5LuybE0QPIB5DD1HPUd6afvCext0UUVoSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRVW/1Cz0qykvL+6itraIZeWVgqj8TXmPizx/r+oWFwvhGzaKBFJN3MuJpV7mGMjt1yefQUmwsdz4i8W6d4cREm8y5vZeIbK3G6Vz9Oij/aOBXifjjxj4jv7u3k1S3jXRJG/d2cMhMMhH8MjjG9h6H5fbvWFZeOP7O0eeSKxWXUZSTJOzFmmJ/jdjkt9Kt+HPHtvc+Hr3R/EGkNeh8lPLAUS5PRs/cI7MKkopar8Q72Ke0i0u1hEcRVmZlyJAP4AB90duOau+KvEWleLLezubfSpLW+VQJrh2Hy+sfH+sHoeMVy/wBljRzLglSchCdyqOwJ/iIqzCxeQbsHnqfSrUSbkKRJExEabQOCSfmP+FWePIK449qY2DKSMY7U8qfKP+eKoRFGc8GlnXbJyOKIRzyfpUk6gsOT0oAI8MCPaoiMEkEe9Kr7WOecD8qgzJI/7sbs+vSqjFydkTKcYq8mSzzBVUJnJGCCKiSB5MNKNkY7Hq1XbHSry7Yra2s93Iv3vKjLbfyrU0K7s9L1gSapYfaIVVo3idMmNiMBtp4JHoa7IYdRV5avscM8TKbtHRdyhf6HqNhaRXk2nzw2UmPLnaMhWz/L2qozbuenQV2PibxvHeLd2WmWqeTc20dvPczIVkcL2CZ2qPTuK4wfSuui5uN5qxwYhQjK0HcsC8uhYtYi4l+yM/mGHd8m/wDvY9ahA/KjHNXtJvv7L1S3vvs0Fz5L7vJnXcjfUVraydkYp8zSkzY8L+FDrl0ou72LT7csFBlOJJSeQI1OM/XpXWWdtpmn6Db2GqFtISG7cXxuoijXwU5GyVQSCBjgU++1228Tae9npUd1quoXTpNBaXEQxprKcsTJx8nHA6YrJ1rxBbWt39o1C6i8Qa2nCJ/y4WR9FX/loR+VcDdSrKz+7+v1+Vz1IqlRjdff/X5L5mit9cjw81v9qOk+GlaRYb+8XzLq5iJ/1cSHkccZHFcvP4gcwNo/haxlsbOQHeY/nurkdy7DkD2HAqtbR6n4y1t5b69ZiiGW4uJMEQRDqVXI4HZVqWbX4NMjNr4cjNuoxvvznz5WHBZD1RGHVa3jSUXa13+C9e/9WRhOs5LmvZd+r9O39aj/AOy9N8OHdrLC61BRlNPgYFEPDI0jDhkPQqOaztY1TUNSaJrtDBbID9mt0QpFEhOdqD0/Ormg+H7PX7Oa2t77ytaDboLaYBY7hMchW/v/AFrrdH8ZXc8P/CPa9OtjfQ/uobq5gV0yOAkyEdO24YqpScXe3M1v5ei7ERipx5b8qe3W/q+5zmjWuh6/pkelSbNN1pCfs92zHyrrP8EmfunsCK0zBDqNjF4W8Rn+ytZ07KWV1N/q3Q9I3Pp6N0qPWL220+/ey8SeDrETYyJrGRoPMH95cZUir0uveD9b0QadqcuqI0K4tZ7iMSyw/wCyHX7y+zfnWcnJ2kk7b97enl5GkVBXi2r7a6X9fPs0c3L4G8TxXf2caNcykn5ZIgHjYeoYcYq94kZNM8L6V4ae5ju9Qtp3nm8lt6wbuBEG7n1xWNpUGsakxstPnufIXAkPmssMQPALnOFH1rR+06T4YIFmItS1VfvzzJmCBujIF6Oc8hxW0uZySerXRfr2MIKCi3FWT6v9F1GeI4F0/wAM6RoswUXiF7qdRt3RFuiNxuBx1BroIPia0nhdLH+ywb1YTCPJVTEQOjEH7v4Vj6b4W1PXLs3uqXJQyBJS08m6SYHoD1Kbh90sMHisbX9Mt9K1Ca3sr2K9tJlOVUkOnPKOOMMMVhOlTqLkeslr5eaOiFWrSfPtHReZqQ2lvrfh+/1DW5ZTey3kdrCBMBKQRyAv90Ej61jx+H5fD09xp909wWmn8tVcgQTBT045349OnB5FVbPULiy1S21C0VRd2xDQs6hghHcg9fxrqtEms/EYtNFkh8+5uJJ7nU7m4UbEXHVOeAMD3zmuHE4WdNcy28un/AO7DYqFT3Xv59Ti7qACOS4hZfsyyFHQOGeNvRsdfqOKrRzFACoK8hsgZzjsa2YdJ0nw3cyzi+fUZyCkVvBxGF6Zkbv9BWHDEylwTkA114dzqwcai0OTEqFGanTevYa0oN2JniGwuGKdAR3Htmuqma28S6dPHo+m29lcxXHn/wBnxEsZI9m0lCfvEEElfyrm0hecsIomkC9SoyB6CpIoZ7C5bzN8E8LA4zhkYc/UGqqU4zXKnqiaVScHzNaMxpig1FjkDY65Vvw4NdlaXiorXthdRwThGVhJglc9uf0NSaXrh1XxBHFqsOmvFPvVpJbVA28qdmX6g7scmuT1W1ns3NrdQvDcxttkjccg/wCe9edVpOLtI9OlVU1eJt29v5xLz3ZuTCdoCYy3f5m7D8z6V0lmslr4a1h2OCcBG5GQR/8AXrkvDaxtaPaLxM7ltp/i9CPceldJPJrV7bS2nkWv2eRVjCqSGyOrEnp/KsbtM1tdHP6Cbi2uWMccMjfwmTgKc8HNdJ4bjubDx3b+JNTYxW8MrSP5Iw0o24OF/un9cVDbWUGnRYSRZp+pkP3F+g7/AI1esLU3XiKx0y+juQ16jPjkEJtJ3n24pxjrqKT00PoWw1C01SyjvLKdJ4JBlXQ/ofQ+1Wq+a/CvjC+8NXRktZN8ZOJYJPuyD19j7ivevDnifTvE9j9ospMSLjzYGPzxn39R6Hoa6K1CVPXoc1DExq6bPsbVFFFYnQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWVrviLS/DlmLnU7pYg52xRgFpJW/uoo5Y/SgDVrjtf+IFnp9xJp+kQ/wBqamnEixtiG3PrLJ0H+6Mt7V514/8AG/iq+sElt7KTTdDeTy5Qkn79vRZWX/Vhh2U+xPauK1HxybLS0tNG06K1LDGcZEXrhe5Pqam47Glq3ibXZvFhHimJJriP5reBjiGDuHiUnaQR/EcmqFv8TbyLxVFdNYobFAY3hTh9p/jDHofbpV/UvFmmeJ/CMFtf6O6arCCqyKwVImHG8OecHunP9a5FVW2OUG5+hlYc/gO386EgubfiefTdY1h77TbOWwRjubcQGmP9/YPuH37+lZfAPChR1OepPue5p0T5LevX1poO5iCeapITJnO6EEsMCmwoC4BxjvSuCbcfl0pITypJ5HrVCEk/13WpRzG3Tb9KbOuZSSKb5gSIgj3z6mgBoOB6jNJNNkgKT9AM1GPNk4jXqeWPStTS9HvNQlkgsITcTxwmR0UgMyjrgdz7Cuinh3LWWiOariVH3Yasz7e2muJArKx3cJEgyzHsOK073RdR0lU+22FxaLJ9wypjP/1/atjwd4gs/D+oXM13C5aWLy47hE3PbtnkheOvQ9DW/LqEvjBItD0jT5m0tJ1nvbyXbGTjqcnITv1JJrpu6TtGPu9zksqy5pS97sV7Lxtplp4bSySG7idLUwmzhCpHJN2nMo+YH2rF1u0vtQsYPEEl+NTikUQzzrFsaF1AAWQep7N3qp4j0e00q9B07UoL+ymLGKRGBdcHBV17H371lDK5A3AH7wz/ADFaU6Ufjh1MqlaWsKi27EEw+elAp0gy1X9I0TUNbuTBYQGTYN0kjHbHEvq7HgCuptRV2cVnKVorUoYA5PFdJZeGEtrOPUvEdy2m2D8xQhc3NyP9hOw/2jxVgXujeGGCaUser6wDj7dImbeFv+mSH77f7R/Cr9n4A8TeJJzqOrXH2ZpuTLeEtKw/3RyB+VYTq6Xb5V+L9EdNOhrZLml26L1f6FD7fquvxNovhjSpLPTD9+C35aU+s0ncn0ziuVeN4pGikQo6EqyMMFSOoIr2bSvh7d6Tazw2Xie9gWdcSiGEBSfUZPB9+tc9qXwn1GNXl0/UYbxupjlBjdj9TwTUUsTRUmr2Xz/E0rYWtKKla7+VvkjAtMx/DjUmhJLS30SXGCThAMrkbcDnvmpNJttF8RaZFpTCLTdbiyLe5J/dXef4ZP7reh//AFVX024bQLy80nXbSdbO5Xy7qHZmSPHR4wTt3ejHPHSodR8M3lqv2i0C6hYM+xLm1PmLuxu2nHO4DrxgVrZXava7un/X5GV3ZNK9lZrr/XmZ17Y3mk372l5DJbXULcq3BB7EH+RFdfaTr460a9h1JANZ020M8WoAY86NeqS+p9D/AJOdB4uiurCGx8R6YmrRwriCcymOeNfTePvD61aF3qOtafJpmhaQmk6MQJblwSd6A4LyytyyjuBSqczS5lZrrfT/AD17DpKCb5XdPpbX/LTuZMfiaZvDcmjahBHe26jNpJKxD2jeqnuP9k8VNb+HY7O3W91+4NlCf9XbAZuJeMqdnZDyN1TLfad4acLpYS+1ZTg3zfNFC4OP3I6OrAkfMKtWXhDVdUaW61g3NvM6brdJ1O6bucE9FXqVA3Y6CnKSim17qf3v0XQIwlJpP3pL7l6vqVWu9T8QxTWGh2Bs9Lt42ke3hbISPqfNk4LjIJAP4VPYrp+kW0Op6T9m1iNWEF+Z0KvBu4zGnUAgkb+Tx0FXNU1Ow0mHEVuLHUYWieC0hQo1s45YvKD86Muflb5gTziuS1TVZ9Xvbm7nSKBJ18vbbIIgiZztXH+T3qEpzj7qsvz9e/r+Zo3CnL33d/l6Lp6fka2seIo42lsNKaWS1EP2UXd3ABctFnOzcOdnAAzzx2rmWJb5nJAPPP3mp8kzTt5jswAAUAHJP+fWmbTnO059WOcV0UocsbW16nLWqc87t6dBpwV+b5E/ujqacqB03tLHBEHCglsEsew9TTgoBz1PqaFUpnY2AecEZGac4ya93cmnUgpe/sRzK4laE/Lt4PvUWyMTRpO7R25I3OgyR7mrATkkksx6se9IUzkdqUqTlC1wjWUZ8yWnmeiXvgrUkvrK20O8sbPTp1wdTWTf5QIHCDoCw6MefcVieKE8EaJpLeH9EibUNXR90mpGTOx++5ujZ/ujgetZGg69eeHJ2NtteB12SwSjdG6+hX+orZPg/RPEko1HQLpdPiVgb6xcZNuCfvJ6rn16V4dbDzoO9z36OIp11ZHGNp5RFuFdZVJw6YxtNXm1wvaxwajYQagIVKRNOWEkakfd3qclfY9K9jvfhrY2Hg64h09YjqEm1o5ZW3b8difcfhXkNzoN2NQkspYjDdxA7kJzj2zXRQmqy5Z7mNeLo+9TK+sWFtZS2Elpam2t7m0jnXDFlMhzv2seeDx7VB4Ygv8AUNZJgWa5MFvJLL83EUY6sxPAFbem3KWVudOvrdrrT5Pme2dsFW/vxsPut+h71etD4RsTttdL1aZpdube5u1EEhzx5m0AsAecd6UsJUTsldBDGUmtXZ9ilZ2t1rELXwmj03R43w19MPvEdo16u3sPxxTr7XBBbTWuipNDFMNtxe3Dbrq6H+038C/7C/jmppW1LxNftLKQ/lArEiqEjgjH8KqOFH061jSKSccADiuyjhop69P6+Zw4jGSt7uz6/wBf15lRFK4I4IrW0nVb3Sr+K8sJ3huYz8rL0I9COhHtVLZilC4rrcE1Znn+0ad0fQfg3x7Z+Joltp9ltqQX5oiflk9Sn+HUfrXY18qW9w0ThgxR1IKupwQR0OR0+teweC/iQtz5ena66pNwsd2TgP6B/Q+/Q+1eViMG4e9DY9jC49T9ypo+/wDWzPS6KOtFcJ6YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzfjfWdR0Pw5Jc6VHA967iKPz87VJB59zxx2rwWx8YiC4vb7WraW61pQd00z/ALxh/cXPCL7KBXunxCi8zwnI3/POaJ//AB4D+teI61pkGpQyTP8AJcRqWWRRyQOcH1qHuUtiLw18SftF1eWeuWKvYXWdvkRl/L4+4VP3gfXqD7Vy+of2YupTPYW80VsXzHazSB2T2LDt7dR61Te4VAVth5aHqf4mz6nt9BTEU8ZRgpyRwcEDrg+g7+lVYVy6JGkKjaOThUUYA9gKHYMTjnaSp+o6j61GdwjLI211G5T6EdDXbeKdXbXvCWj6jJBDCzybtkaDgsnzEt1OSM/rTb1sI5KAE8A80gbEpHan2/EroVbKgbwVI25+7n0z29aGj+bn0zTAnwPK6UxP3bZA5pUb90ccY55NReXIwVkcDdkMfT6etXCEpu0TOpUjBXkxbmUM4VQSfbvQtu2wyTEKq/w56f41q2WhapLp8mpW+m3MtlHnfcImVGOvPt6itbw1rlhpEF8txEUup1Bt79YEnaLH8O1uMH1HSu2FGNNXXvNHBOvKo7P3UzIu9LvdIeEXMPlmaMSwuCHR1I6hhwff0rd/4SK103SrS08LQSWt7MuLydk33BfPAR/7p9AKt6TJrfiqNYtZlI8P20nm3M5WOFYuP4W29eeg61gX0T+Gtdhn0rVYbkLie2u7c87T03D+E9iDWvxvlluvu+Zm/wB2uaHw/ivQ39S8OPdafJfa1qFvYeI7hmnFrPIiLNGF7qB8jfXrXN2+vahFoU+jJMPsEziQxkcow5yp7Z71NDr8g16TV720tbs3L5uYJIgUkU9QAc7T6EdKpXzWJv5G0wTrascotxjeueoOOCB0Bq6cJfDNX6+SMqlSPxQdunm/Mvf2jp13oZtLyz2ahAd1td20agyDH3Je5553dayOS3OSWP1JJrS0bQb7WWka2VI7eHme7mbZDCPVm/oOa021rTPDgKeH1F3qGMPq1zHwh/6YRn7v+8eau6i3GGr/AC/yM7OaUqmi/P8AzGJ4btdLhS+8UTSWqOu6HTocG6n+o/5Zr7nmqereJLnUrYWFtDHp+kocpY22Qp93bq7e5qvHpWtatM9ytjf3csp3PMY2YufUsetOm8Oa3bxM8ukXyKB1MDf4U4qN7zkm/wAvkEpTtanFpfi/mej/AA08KQ29hFr15EJLqfP2RWGRGnTfj+8ex7CpPFnxAuLPUm0fQYhPehvLknK78P8A3UXuff1rtdOQW2iWiQjHlWa7BjHITP8AOvn3Tpol1qC4vp7mKLzt8stsf3q85JX3zXDRj7epKpPW3Q768vq1OFOGl+v5nVXH/CxTqsVpLJqpu5E81ERxjb9R8ox6Vc8PfEXVLHUVsfEO6eDf5bySJtmhPTJ9QO4NdjH8QvDbXclkNTlWNItwu2U7XOOg4yW78jBNeTRWF14n8UyW9nNPePcTEm4mXDFM/ff04rWmlUi1VgopLtYxqt0pRdKbk29r3PXPHPh2HXtAmkCqb60jMtvKOrKBkp7givELO/vLCTzbO6mt3Kkbo3KnBGD+Yr6E1q8g0fw5e3MjDy7e2Mak/wAR27VH1Jr50AwAO/Snl7coSjLYnM7RqRlHRm4PF+uDGbtCw8nazW6ZAi+5jjt+tU7vWNS1Z0jvb+R08xiqs21ELnLHA4AzyaoMpDFWBDDqCMEUnQZPHvXeqcFqkjz3WqPSTZ6npvh3RvCMD6pfyW98gBWC88z900hX7m0Z7jhxzn0rl/EXjqbVYWtrK3a2jkdJZJWbM7uo+XLDgY9RyRjNcs9zPLbxxNNJ9niz5asxIXPXavb8Ki+6MHKg9u5rCGGXNz1HzM6KmKfLyU1yoDlmJY736nngH3pABJIoeYAE43Y6CnBSwG7heyinEAjaQMV02OTmsxZkjWBiiSx7JSFEuMyD+8MdqTqAaQRoDnH6041NODjGzdyq1SM5XirABSUtGK0MhMUu2lApaBXE2gjFbPhq9uNN1RZbKWGOZwUaO4XdDMv91h/WsinEqg+b8B3qKlOM48sjSlWlSmpRPSbvxVqUFmkZAslOFd3cNsB4xGB29zXIRWk9xG9ytvLa6h5hIRpfMaUZ6kg4IIqhBcbWVrtGnxjyoCxIJ9SK2LC4dGU3E0MUcK/Ns5K/7OfX6VwrDKjrD/hz1PrSraTX/A/Qp3NkTcyssUqhYyFV1x82eQPUYzSW2i3IvoH2ArFsaXJ+7k5x+VJPqr3l/uBzn5UHZR2Arp43RdOQhFQsRkAd88mtZznCNn1MqVKnUk5LoZ2iKtvbahMTjO8n0XkjiuVPOfWuisptmjX7Md2WYBfbNc6TWtFe9JnNi2uWCXn+Y3FJinHrSVucY3FWomiRIt3ms0jEEquVjAHVj71XoqJwclZOxrSnGLvKNz0nwZ8RJdJMdhqrtPYH5Ul6tD/ivt1Hb0r2K3uIbuCOe3lSWGQbkdDkMPrXysjbDkc+1dd4R8b3vhubYC1xYucyW5PT3U9j+hrgxOC5vehv+Z6GEzDk9yrt37f8A+gKKz9H1qx12xW7sJxJGeGU8Mh9GHY1oV5TTTsz3E01dBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGB41j83wdqYxnEYb8mB/pXiVyyrbTNKwWJYmLs3RRjGT6DkV714hi87w5qUfrbSf+gmvJfCmqRWN3qkZjSVpLEbUcZ3AsAev1z+FRLcpHiK5Q7WUhhwQw5H1Br2bRNTt7n4VaXp4W3EkVnOHZwMHLMGU+54Pua878fXP2zxnfXQUAyKjPtXGSFwScfTk1Y8P6w9rok1hKCoPC545LbgfoRSk/dBbmHAf3aq2QWU4yOuBz+Xetq2kMvge3jcMdsq7W7AfMpFa3gfVpZdJTQpLVPIW+M6XKpySw2vGxxgggj8ODxWXY4i8HXlpIQhgvGVSRwMP0NUpa6i5Tft9fvNb8BXcNysW60UW5YKAWEeNhPuBxn2rjpGkb95GrsgPJA4z9a3/AAwhl0LXLU8MzFsdxlOP5VkxSeVIksqkYTy8hztUAdl7GtqFFyemyZjXrKC13aLOk6Rf6u0kdjayXLABnKYCoPUseB+JqUW8mkarGmo2DMbeRWmtZTt3rnOM+hHcVoaLqtlb6adE1W3M2my3IuYpEmMSF8bcTEAkx9+ORjjrXWavpltrmg2V0rhd8nk297JGY40hTgJbwLlmDNwo5YgZJFd/tPZvltaJwey9oue95GVqXi26u9UsI/DURj+zyM9mkVtseMuMNEUBKuvuRzVbWfC0NhpCTPf28esQp5t9p8kylhluCmOM88p1rLguta8F60swjezughG2ZAVkQ9iOhH45BqKz083+peTdeZbPKS+4xk7WboSOynPWlKUKNnzJL72xxjOtdON39yQ2XW7+40ODRppRJZW8vmQqy8xn0B9Pas4gZOB1rW1vw9f+HZ4YtQMBM27ymgYlXA6nkUaT4futUie7MkVppsJxLf3J2xJ7Du7f7IrphUp8vNHY5KlOq5cklqZgheR440UvK5wsaglifTHqa6JdD0/w+qz+J5Ge6IDJpFu/71h281xxGPb71Nl8R2mjI8HhhJFmYbZdXuB/pEnYiMdIl/8AHq5olmdnZizMcszHJJ9SapKc/Jfj/wAD8yG6dPbV/h/wfyOmjn1nxxqNtpFrHFb2qcxWkA2W9ug6uR3x6nJNeo6R4T8PeE7I3c4gkliGZb68AwD/ALIPC+w61i/CWyii0O/v8AzTXAh3Y5CKAcfmc1z/AMUtUuLjxGNMLsLWzjVlTszsMlj79hXHO9Wr7CGkUd0GqNH6xPWTOrvfivosDmO1hvrxRxvXEa/hnn9Kgg+LumFwJdOv4h/eWRW/Tiuf8MfDmS+tU1XXZxZaZsEoXeA0iepboin86yfGV14auL6GPw5aGJIV2SyrkRy46EA85/2u9OOHw8p8kU33ZM8TiYw9pJpdl1PZ9H1iz1zT11DT3d4GYr867WDDqCKxLr4beG76RpEtp4HJy3kTnAP+6c4qt8L4JIfBpkcELNcu6Z9AAM/mDXC/EG8dfHWoG2mkjKbEYxuVyQoz0rGlSk60qdOVrG9atBUI1Ksb3tp6neR/CnQI23SHUJF9GkCj8wK0nvvC3guyaJJLW0B6xQHzJpD74yT+JxXh322/nIi+1XcpY4Cea7ZPoBmuq8KeEtLuZkn8Q6lFaA3HkCwL7J2k9HzyoP6+orerh5JXrVG12Rz0cTGTtQppPuxPEniLUvGk8aQ28tro0EoGdrMqE8b5WAPIHbsK6jwx4Xi8NahcrPNayXF3EBpeqFA8O7HK4PAbOO/I6elT2Goat4V8RXekHQ7hdCOZoltcy+Qnd1P8QzyVPI7VV8QeO7bSmn07ydM1qxuIdyPEdoGeiuo4J75GD9DUSlOSVKmvd/r8e6NYwhFurVfvef6eXZljxHp0+o+Dr+fxXZW1pqljkW17CR/pJ7AAc4PTH48V45glsnDMOvPyrVi5vbi6CrcXE8iL9xJJWcgenJ4FRxwPMGbAVEGTzhVHTJJruo03Rg+Z6fgjzsRUVea5Fr+LIhlmypyf757fSnhQvufU090aNijDaV4IptdKs9Uccr7BRRUsEQmmWMuEBzlm7YGaG0ldhGLk0kRUuOeacVQxxyRsWSRQwyMEfUUKdrbsBsdm5FKMlKPMgnFwk4y3Q3FLTdyngMKdVEhSimkhRzSE5GZDtXso6mgLDt5Y4jAJHVuwoU7WzH8z93PQfSkClxg/Kn90f1oMgUYT/wCtQHoSDEZ3FjuPfuaY8pf5eijsKW2iWd5N7sAiNIdoyzY7AdyafdwRwiF43ZlkTdh1wVPvWTqR5/Z9TZUZ+z9p0IVJDAr1HQ1uTaptt5ZfMkImURx24UBYSByd2ec5zWclgGPlm5hW48rzvIJ+bYehqBstaxbcnlzwPpWbVOs073szaDrUItWtzIuJcTPYCMusECrjLAnzG9sVTySPlaNj6AnJqwl4YbiCWRQ+Idq5GQp5AOO9R3EiOsaOvmzRJiWZF2bj64qlKSnZR0fUUoQlDmctV0Ig4YcfiPSlpCQwUlvm6LJ2Ps1GSGKsMOOorZM5ZQtqLRR+tFMgKVWIOQcUlFMDc0LxDe6Herd2E3lSDh0PKyD0I7j+Xavb/C3jLT/E0ARGEN8oy9ux5Pup7j9R3r50BrSs5Jba4hlju1iuwvnRhHw4APX2rhxWHpyV5Oz7noYLEVYPlirrqv1R9PUVwHg34iQaqI7DVnWK+6LN0SU/0b9D+ldH4i8VaZ4ahj+1u8t3OdttZQDfPO3oq/zJwB3NePUpypy5ZI96lVhVjzQZuUV43qvj3xvpGoR63c6faSaMvy3Gn27b2twT1eTH3sdx8vb3r0vw34o0nxXpovtKuRIowJI24eJvRl7fyPas7mtjZooopiCiiigAooooAKKKKACiiigAooooAKKKKACiikJwMngUALVLU9WsNGs2u9QuUghXux5J9AOpPsK4/wAT/Euy0sva6Sq31593eD+6Q/UfePsPzryvV9Uub65e61m7ku7vGdi9IVJ7DotXyqK5puy/ExdW75aau/wR0Pi74q3ep77HSUe0sm+WSRgPNkU/ooP5+4rjvDF8Ytc2H+KB1XPbocVSU6fdO3MkTdVyQ26i1i+x61bqjqWk+5tOce/0+tXKVGcV7Pp3M6SrQb9r17bFjw9rpsPibbXwjjljlheIxuoIZCvI578V1F4sV54KmnvkgGpTzJGnyhX8hcqFX1VTj6ce1cNcRi28aWlxtVIxJ91Rjk8fzrvvFVve2ujaNeQwW88UwwF3bccZ79M85IrkaXKjtV+Y5X4cMV8Q22nyToUkuJSEckqGKY3Y9flFLr8FzY33iCwjtLeO1S4bzAZN7eYSG3KfTnp2qjo7FPGEc0tqmPtKFokYjCk7SAfcHrXQeMEmi8TXySrFGLuOORFQYUnbtK5/vDHOetJ3uC2MrwJue41SN2IjeNWZh1GMjj3FdURceIDF9k0yN7O7QSGR9ouNUEfDh5lG2GQAbtpxnuTXA6NfNpN+3k2ktxI+FZC4CkA803R766sZL6IPMNJkmDzWbTFUuNr58tiOvGQSK6KMmpWRjVimrs09Z0qPS7u5awn/ALQ0lZfKM6jKq5Gdm4cFgOpHBo03UordPKu4p7y2AH2aWG48uezIJP7sngA55GOa7K01G28TSJp2l2guYIS9xJcS2YRNPicYKJCnEkgA2qx79K5LxJoCaFfzKwtxA0jC3i+0rJLsHILgcj8QOa9GE+b3J7nnzjye/DYTzE8QatpWmLt0nSrVz5Rkl3kFjud5HPUnHQYFaviy9ms2t7N7i2mjjDMZoCNzR5yu/Gfm74zxmuOEMLW4mmcIsknloqgsd309K2vC3huXXdZt7AywtbxSb54iwGUHU46k1z1qVJNybvbodFGrUaUUrX6ndpoOoajHYaj4mdruKMAW1hI4ykZGRu2jLE8cDn1NZmueGfEWvXDyNeJcJbIXt7KCHZGkXbYg6HoD3rp73Xo9DJi1SdZ5VCi38khnlHQAL68Y9K86134jTXOqSWTx3em2LZSfyn2zDPXLdWX2GAfeuClXrupzXsl5fl/XzOupQpcji9bnPQtDJcL5xbycZIU4LH0z254pHARIn2LFK3+siV94X8auahpLac6GGVL62lQPFeQg+UQe2ezDuD0NUgBuO3527nsK+hhao1UjLT8D5+peknSlH/M9G+F3iSCwup9IvX8mC8YPBK5wolHGCewI7+orrvG3gb/hI2S8tJUh1KJPLYScLMo6AnsR69K8SR4hEq7IJJDJ+9aYnHl46KB3z3rrNB+IutaJGIPNF/YL8qJdAlox2AYc4/OuWpSqe1dSkrNfj6HXSq0/YqnVd0/w9R1x4T8bCzTTJLG+ls43LJCkgaIE9xzWnofwu1K5nSTWWWytQctGrBpXHoMcL9TV9fjAg4k0LDHoVucqf0qhqHxY1adCljZ2tjngOcyv+GeM/hVXxclyqKRDjg4vmlJy8j0HXNb07wbosfyIhSPZZ2anl8dP+AjqTXjmnaFrni2+uLi2gaZ3cyT3Eh2Rhjycsf5V0WjeFhrely+KfEF/d30RODBZfvZ2IOMN/d/3R2rrLi1Tw5aR6PeWl7f+FbqIkt5ZMlgSc4YqMlec56jBrOE40LxhrLr/AMD+tTWdOWJalPSHRf59v0MXSvBUVnDFYXnm6V4lEhlstQEu+GYjoq9gcdVPPcZHFWPFmmPqPhGfVfEljFYa7Znyo5Y3GL3HQYHOD+nXpVDxTrWk6R4QbwxZ6rJq8rSK8dySGFugIZQrDqQOBj1P0rz28v7u8KfbLq4nKjCiWUu2PcnpWlKnUqtVG+v9W8n2ZFWrSpR9mlfT+r+a7r5nXa18R9QvtNi0zSYm060jiCSETF3bjBBc84/U1xHLN8nJ7uR/KlI+UGThR0UdqQsSOflT9TXdTpQpq0UebVrzqu8mKMKcKNz+tNcq8bRSeW8bY3IwyDjpQcD5SMA/wjqfrS8r1ZV9sZxVtJqzM4txd1uK0rM2S6E0b29UP40nH9+P8qMf9c6aVtBN3d2Lub0U/wDAqUM3XZ09DTdn+zGfoaXy/wDpkv4NRcNBWLN80jbV+uS1MZdoUtE4RuhJPIpwTBB8knHbdUkk00huS5nkNwwZhI2VQjj5R2rOUpprlV1112NYKm4vmdn08xZZYnWf93AqEr9nWNSHQY53E9ajViQAoycck9qYE2jMnA9O5p5JY7cbVH8Ip06agrJ/eKtUdV3aXyAYB+T537segpeEO5jlj3Na2iWsUk7SzQLNHF0jYkKzds45I9q05Y7G2VWuZLeAP90PgFv/AK1ceIzCFGfJa7OnD5fOtDnvZM5RnL/SrMEEDrDvWZzIWDuhAWHHTOeTmt++0SCaPMaokhHysnQ/WucS2BRnmmSFRIsXzdSx6D/69OOKp16bkpcttylhZ0aii4qV9hsMBlvPJSRV5P7xjgADkk/gKmVo/s8cqTJd2dx0YZBB9RnoaidHimdHbEkYyHU9RSmR5VhEjbvnOP0rpak5Jp+7/WtzBOMYtNe9/XQkWaUCZPMyEQqG2jdjOMZ60kcRna1hDhN5K7ieBk1Fu/4+G7nj9abIf3cI/wBkn9TVKNttP+GJ5r6y1/4cs3EUbwRTwSFog3k/MpU5B9KiY/v5T/tGiZ3a4i3uzYC9Tmm9ZJf98/zqaakopSd3/wAEVdxbbirIXoSyY56qejVJbwveTRW0EbyvIwSONRmQMegA7ir2meH9W1q3mn06ye4jiO1ipAy2M7VyfmOOcDmt7Qbyx0rQUOpw3Nk1xdebDqNokbzOIiN0WG5j571NSokvd1ZdCk2/f0j3OXvrK60y+msbtYluYTtkUSqcH0yDioMP2UY9mFdL4ivNa1nTU1C402G000XbBAsCxmWVhnc2OWYr36E9K5YFG/hHuCOlVSm5Ru9yK9OMJaLQeWKkb1Kg96d2pg+UkoAQeCh6GpbaGW4uI4rSJ7h5G2rAqlnz6YHWtOa25ioc3wjR+lSx+bKwhiDO3OAo5A789hWhruit4cjgW9vIGv3BL2cJ3vD/AHQccFj/AHR0rJ1CHVNFjtpdU0mQaXM486LzNhl/6ZyOvKnHO3pXLXxdOEbrV9Dsw2BqznaWi6/5F/T7bU9RMo0mKKUwtta4kbbErdlDdGOeMDgd6NL8Y3Ph651FdY02WfWiMNcXDnzs9o2JztT028Uuu/EkQW9nbeHbCO3t49pJmQbVx/yzVBwB6nqe1WNY8Rad420q2jh0Sb+2FXmZnCra+uW6uh/umvHrV51XeZ7tDDwoxtAh8NfFDULXUrhdZthcWk7ltsCBWhJ/hAP3lPoea1PDNtc/8Jta6zYQNoaTzoi2UMhO9SwyHHQKeu3semKz9K0O10wh+JrrHMpHC/7o7fXrXVeHAZPFGlDk/wCkoT+HP9K52dCPcaKKK0ICiiigAooooAKKKKACiiigAooooAKaXVWVSwDN90E8muW8U+NLfQh9mtfKub49U3fLF7tj+VeT6j4h1O51IahPeO9whzE+cCL/AHR2/wA5pX7Ae16/4m0vw3a+dqFwFYjKQpy7/Qf1PFeKeLfiLq3iFHhhJs9PJ2+TG/zPnpuPU/QcVk3OpH7Qdbu5vMnWQOGumzGzg59y/wDuAfpXPXurxyyytYB7cMxYzuMzHJycdk/DJweorpp1KNPVq7/D+vM5KtKvV0vyr8f68ieS6GnSo947GRACtop+cjr83aNfrz7Vk3mqXd8xLsIow24QxZC59SerH3P4AVXUcFSDtzk5OST6k+tAQA4NYVqrqy5pHRRoxox5YnceDZ/C+uTnT/Eds0F5KcQ38c5iDn0cfdB9DjnvVXVtIfQ/HTtDG11bxSmNfNO05AwFYjvjketcn5fYdPSum0fWZtRli064VpruZlihdjnzj0VG9+gDfQVibFLWFuJZLefyEhKv95GLHrxn0r0fxSUXwhaCyO+ytbiMCQnLspUgkDsATyPyritRtJVieMK8ckUhSQScNEw4Ib6HvVptbSUNarFc4SMESNzGpH3vqD1BHWk9h9TFupBZ6qLiSOV0kTcphAJYdiD6cVdmu5dYJE9k6BjhRuyWQHg+x9aydfln02aya3kCCQOTGx3ZJx82P4c1J9olvdNEspA2k7ggwD71SjfUV7GSl5cWuqzQiRWWKUxqSAcDOOv0rqdM05dV8TWWmXFxIBdHyo5EUExkg7Tg9s4z7VVtvBmoapPFNBd2iC7iNyBOGTyogcFnYAqq5BwSRmtzSLYWt67aFImp6xEu5tSn+W2th0/dIeXPUbm/Ad61imveM5NPQ5Zby+smnjgvHjBJjk8liokAOOcdR9arLIpyJEXB5LKMMD6+9dzeC709l/4STS9PvtPlBWWfT7YRTwjtIjgAEjrtPBHWue1nRJ9LvkhiaK+tZoVuLa6ijKiWFvusR1U8EEHoRXqUa0JHl1qM4efkRaFqNvouqie90+HUbORDHLC/dT1ZD2cdj/LrWjrCeHLaRH8N3GqXN0snnC8K+WIUI4jx1LDu3H41gABU6Fo8/MvdTUyTNHBFGWk8pJDKuxtoZsY+atKlNv3oq7/MypVUlyydl36oHvprnVodRvrm7u3jdC+WwzKp+6G7cce1dGXg19La8uWWPUbq+eLS0QI726AdJV7r1wTz3FctJKzsW6c9B0qxp99d6bei8sRGt0sbJ5joGwrDB68dO/Ws8RhFUjeOjReHxkoStLVMu3OsHw1OdLv7K6aznbfqFgsoWCTBPzRv3bODu49CMjNN1OwS3ihvrclNKuyWtBJkSbf9rIGcdN3TPStSwv8AS7i10XTItKW/urYb5Jrk8CQtljt/iRBz7969guNNieFoUjhuSyBftFxhlk9BgdB9OBXmRrzwkrNfL+tj06lGGKhv8zwVZ4k8lSsQRN3mq0WWfPTB7VBg7CuMM7DC+1eleIbHw9oelzQaiiWryRmSzEah7hZT/Cf9n/aOOPevMkJ8ppTgtkAEnPNergqyrRdRJq/c8rG0XScYXvb7/mWZ7cwJt8yORoG2yqjZ2k8/jXffDGbTZ7i+0u6sLWa7uYi1u9wm4OAPmjOemevHPWuEKGRlt5LxGkMfm+UBzjOOT60tlezWN3De20phktpA8bLydw6VpZ1acoc135GTao1ozUbLz7HrMyaJ4T1K5utG1uHTb+FFa70mRzLFJn+Adw3oRnH0ri9e8cX2o3d3/Zc13YWNyAJbc3BZd38Rz2z3C8Vg6pqd5q+oy3uoSGW5mIZgAATxxnHQAdqokqT+8YDHRR0FFLDJe9PV/wBfeFbFtrlp6L+vuFGSfkHP98/0oyFOF+Z+5pTkrljsTsO7fSmngAYwDyFHU/WutHC0+odTnIYjqx6ClXJJKnHq7f0pCMY38nsg7U7aWOX/AAXsKYhB/wBM+PVj3pyqF6fmaWkpiuLgego2rj7q4qKWdIkLOcU2+j1C1nWxlsJYr2QRyxxP9+RH+75a/wAZPt09KwrYinSXvM3oYWpXfu7dx0s9rBjzWVM9CR/SpNsRGV2keoOa2tI+HsaXL3HiOSWaVQZDpsMgDovXNzKOIuP4RlvpWl8QLC2sbLRLm3W1Y3MZ2PZgJCkIHyIE68Z+8etcdHMHUqcrjozur5aqdPmjLVHJ7EPY/nSeWvYt+dSJ5Q8lCkzGQMWkUDZHjoD35pO9d8Kim2l0PNnTlBJt7+YgUA55J9TSDmVvanDrSRvKiPDHM0LM6v5sagnA5289jTm3GLcVdhTjGUrTdka2i38VvLLbzMEDkFXPQH0Na9/pFrqmx5VkWRV2ebE2C6Hkqe2M81yM8onnaQKFDdqfHLNEmfOkjXsFYgn6CvOxGA9rL2kXytno4fHOjH2bV0tjsLiW30+2VQBHHGuEjzzx0H/165AyuZnaI5dySxA4/D/Go3dn+ZyQnpnJP+NHJ+XBVTzsHU+5rbC4SOHi9btmWJxTrtaWSDBO7a25iPncngUoGDH1wvK8ct9PajcAB93A6ccA+w7mkLZz3z97J5P+8f6V1XZy6Dto8t/mGWI3N2X29z9KRk3MowflXG3ocep9KPMO4MCc/wAJA6f7o7fWr+l6Rf6zJLHp9pJcmECSUR/MEXONx5y59hUuXKrsuMed8qKaiSSRREgeV2CR47noAo7mu08OeCRJHHJqSlrybebSybIjldBkpLIB8h4I28HvXQW+kaD4O08X8l7HctPg/ap4VaYbcZEUR7E8FeGXrmuc1PVPEfi6xv5rKwlGlI/2ghYwssqr8oJccylR1x075rjlXlV0hou53xw8KWs1zS7I6DVPFKxXFro3hbS0ub9dm1Y0EqQsvYdmK9pAeB1rK0nwlBOt9qusXVrcTw3EkOpWk83leW5PDCUHBbnIyNpzisnQPEWi2+g3WnXdtNZLtDrc6c5W5uHz9xnPCrjtwOO9Ymr6/f6zN513IJD5axSADaZQp+UuR99h6mpjRmrxjp59X/X4DqV6TtKer7dF/Xn8ja1fxIsWnyaLpup3mpae8eyRtQjBCkHKmEdU2jjP5AVypO4jeQr/AMMnZvr/AI1ECeNm51YhRgZbPYYrqBoun+HLZbzxa7B2w0WjxviWT0Mrf8s19vvGui8KMdN/6/rscqjVrT12/AqaJ4dvtZWacbLSxt/+Pi8uDtij/H+I+wrWXXPsUVzp/gSwnuLhExc6qyDzn9l7ID2UfMeKw9f8RX+pahY2+vWl1YaKoDQ2FqnkgR+q5/Un5vpVvV/iDpeiRWWn+H7FJbeNlkY4MaAdwvct6sa86vi5T0X/AAP+D+Xkenh8HCnr/wAP/wAD8/Mq+GPEui6TFd3l/ZXU2sqWKzfeL8/dTP8Aqz69zU2h/Ey2vJbyz1+wjFjcEkGNS6quPuOD97/e7GmeJL/w74mtobrTYrr+3ZwGZIkwD2Pm5447MKi0rw/BYMJp9s9z97gfIh9vU+5ribvqdyVtEUz4ctb/AFFri0hnstKcCSKKZw0uD2HoPryK6O1ghtIFgtoxHEvICjqfU+pp7H5c5OKbv2gdKQyQkA9hW74KBm8Y6amOAzv+SNXMo2HLA89zXWfDtd/jS3OPuQSt+gH9aGM9moooqyAooooAKKKKACiiigAoorH8TXp0/Qbi4F8ljgYNw4B2e4Hc+1JgLrfiXS/D8Qa+uMOwysMY3SN9AK8x8T/E+7vd9vpqyWVt0LZHmuPr/CPpz71y+vTXlrfTW13JuuHVZDcb96yo3R0b+JWHf/Cufu3g09B9rkZGZSUijGZmJGBweFHu35GpvoUlqdHa2jvAs1wMPKPMWLptX1Y+/wD+usXVdfsIkkgsYo7tyeZMkQofUY5c/TA9zWHq/iG+1kLDMRHaIqqttDnadoABc9XPHfj2rPUE8HgemKwjTk3zTfy6HZUr01D2dKNu7e7/AMiSW4lup/OvJXmkAwCeAo9AOgHsKaDlRxxkk0BdoHcDpSDBHTBJrY5API4zRzzRk/hS5J79qAFHK4JpMYII4IPBB5z2I9KTGeaMA0xG3pWsypMY5533MpCyk5Yk+pPUn3pZtUvoZNnmRDA+8YlLL9Kw+M/rz3q0kqzsqTNtGQFkx0HvjtQrX1B7FqLSpdcEzpdRxG0UzzPc5ClCQMlhnByRjjmtix8OQWWmLfazqcUunNKY4YdNbzJLmUAEoCQAgGRknPUYBp9zLZadpc+maOst0LraLrUZF2+aqncEjT+FM9S3zHHarujy22qaZZ6LNKLO/s7hrjT5ZjiGZmILRyH+EkqNrfhXcsM/Z85xPFL2vs/69B+r2fibV7aDThBb6fpkCKINMSfhFA+UyHqzf73c9BWLpGqt4furmC7tiQwCyo6/MhXsQa9Rtft8Ltv8NahHct8zsyLsL46mTO0DOTnp3rkp7a3stRuLm2s18Qa2zbmYAyWdmewGeZnHqcL7VFKblFwqr3fktfUqrC0lOm9fv09CxfXCaroKSXkj6To0gO15QfOn458mPOX9NxwgHrVPVLqDUIbU3HhHURZWsccUBXUGjlMcYwpZQuM4JPTBzWKby7bxNFe+Inu3nWQG4d1DSKOoIU8YHB2jsOK9Ht/E3hwXzT6e6XOqNE6IAHnaaUkYdExuYnng4x7AUVabp2UI3W/VodKoql3J2a07M811nSFt401nS7k3ukXLbVmKgPE/eKZf4WH5MORWSCFBKDKn7yHtXWa9cx6VpOqWUtxFJqupahHcXMMIUrbKgPyuV+TeWY/KuQPWuLuLuGNlaHJY8lR/B+PevRp1Yxp3noebVoylUtT1JWjH3lOVPf0+tdJonhi78S3D2mn2+y1DJi7aQYweGYjjcB6DpWBZ3cEc0N2YI54lceZbyEhZB1KnHIFdhrHijT9f03TZ5IZLDWNOkX7LDar/AKM8ZbJwP4CMD64HXsVuaXK4PTv/AJhQUYcyqLXs/wDMu+EvsPgvxBexeIbOa2nVmhtNSaJtmOQeoxhgPvDscUusfEBYrqaz8OnZDuHl"
+
"uoLZbGD5akdSenb0Fc5qWq674zvdh+0Xc00zyw2MJZljwOdik8Crtjolp4V8XWsXiyAtbKscyyRMwVHPzLnjLYI5A6Yrkq4am/fmry7f1+X3HXSxE/ghpHv/AF+f3nfaD4VsLO0t9RvIpL7VbtA8txORIYs/eGDwPQnr9Kq6p4a0e33G+t7e00qdz58wIH2Zgvysh7qfQcg+op3iHxhpen3zHSpY7iS6Qu0UEwaMNnq3Hy564HJ9q831zWrzxBdhrqZruQNhFAxHGOyqorho4avUnzydl/W39aHZWxNGnHlWr7GfOY47ieO1umls0dlhnZNpkTPBA6jPpUbKFADAqvUL/EfrW9pHheXVUkSG6iS/A3IkvC4789BVPULCfRb+Oxu0gEojLzAZZ33fdIbsBXswxdN+7TfM/L8zxqmEqK8qi5V/WnkZ4DMZG4DOOnpU0N5HHHEhSMIiMJF2ZZ2J4OfbpUEhAjYEgZHAqWK92RwICFjj3eZGEB84noSfatq8eaKsr69HYwwsrSbbtp1VyEKWzI5wp7nqfpTlbdKWAwAKaQWO+Vjz+ZpcFhjG1fTua6Dnk0LF9zPc0+kAwMDpS0yHqFN+lOooENt5pbPULa9h2+ZbyrIm5QwyPUHqK9OTXra/k0m4N++ncvHJaxoC6iTG5opiPkTAPfg8V5oMCp47qeKJ4lkPluu1kzkEVx4nBxra3szuwuOlQ91q6O7n1dk1m/8ADnhextdS0y/i8tCwPlqoX52JP3mBJO4n0rE0TTLY3VxBqVm13uJS6MuUe0weCxJCgdgOpzxTvBPjH/hE3uoZ7U3NtcLwyjLRkZ7dwc8is7xZ4ik165zbPOmnLjEUrDdu7lscew9BXD9Vq8/s46R79/67HorGUXBVJO77dv67lXxBY2Gl620GmX8d3ZOodXRtwjJ/gJ6Ej+tUe+OlVozsBXaCp6rV1YbQRorK3KMZJDIAUbsNvfivST9jBKV2eXKCr1G42iQbi2dpwvdjSLknZEDnue9Mz+4VQCWZuABkn8KLq8hsLkQfubnY6lo0fMci4zy6nk9sDpTq14Ul7zFRw06r91DxhWCph39ewpwxuPPmSdST91fr60y3vI9WupY44orKWUgQWkO5hK5IHlhmJ2+vzHFM3gEqcfIxVh1CkdQfU0qdeFVXiy6tCdF+8ibAPzFiSf4sdfoKTHB6f7QJ4H1Pc+1MBJPfJH449/QUb+BjGB0wOPwH9a0MNB+Mtk5yenHJ+noKTHHbAPbkZ9v7xphOc/rk/wAz/St/wjrunaJrMd5qOnC7jRlKzhiHgI7ovQ9eQaiblGLaVzSnGMpJN2Rt+Gvh9NqJhu9ZdrKzabyjDICk0h9MkYTnGAetVIWPhDxPNHpF2+o6nHMIrQW6hoZY2yGjkUcl844HAIrV1PxBr3jV7rT/AA/BcppRVnYOmXkVfvKrHr1BEec+9aVtY+HfBNmJb68tLhJilxFceTm6ljP8Ajzlec4dSCCOa4HVnr7TVv7P+Z6apQ09nol9r/I4bVn1Ww8RRz+I7c310oDeXdSFkkA7ZU8gHggHqMGuk1L4jGGx26LJPFc3KI8oIxDZSBcEQLjP1zla5jxF4x1HxCqQTvAttG+5FCgO+MhS7d2CnHGB1OOa58ybRl8AH+IdK6FSU0nUWq+45JVpU5SVJ3T6vclmmkuLiSWVv9IkYuzHpISck/Wruj6Nf69cvFZRACIbp5pW2RQL6ux4A/WtC28OW9nZx6h4nmksrSQboLSMf6VdD1VT9xf9pvwptz4ji1vULfQ7mQaD4eV8xW9ryHPbe/dj/fbOPTvUVsSoL3f69P6saUcI6jvPf+t+35lxdXsfDi3CeFbZ9T1WKLNzq7QkrAO/lJ/CP9o8nniq/hrVvDUFpP4g1e8nutZjbzJPPXeQSeDEOdxP948j2rRn8aeHfCupWWk2KMsME2biW1G4RHGMknmRuef8is3xtpHhyWODUtGvoBe3fzrZW43i5z/EoH3D1znAryp1HN6nr06agtC1pfjHw/4rtbvTdegFsrO80bTSZBHqHHKvj8DXKp4ahvr6Q2dzI+lq2YrmaHY7j2XuffvV3SfDENr+9vkWSUnPkj7i/X1Pt0roywKgZAxWZoRWNjb2EHk2ybFJ+Y9Wc+pNTM2Gxx+VMD8gd6iL7pTkk4pASSSYU469qjJyoB696ZK4A5PXp7VWkuVG4A4ppBcdJOEJGfzrS8LeLG8PeIkvTbiaLyzFImcHaSMkH14Fcw0rTSERnDU7ykSX+PlhnBydv+NdVHDubTa0OTEYlQi7PU+o9K1ey1qxS8sJ1libg46qe4YdjV6vMvhhpd/p11cS3C+VDPCoWIH7wHIY+/OPzr02sZqKk1F3RrSlKUFKaswoooqTQKKKKACiiuK+JVzqMGgwx6e0qrNLslMQOSMHAyOgNVCPNJR7kVJ8kHJ9BPFXxI0zQA9vaFb2+HBVW/dxn/ab19hz9K83c3Hiu7l1Pxdq507SoUJMrsFwTwqxoe557E8fSuRm16z0lXEcUd7qO7Csj5ihGOhbu2f7v51zt3fXuqzrPfXLSyJxHu4WMeir0Ufz71c5xptxp6+f+X+ZlThOradXTy/zOo1/xfa3NrDpeg2AstPtWLQzykvMzHglM/6tW6kc888VyiqpZ2fc7E5ZicsT6k0LwcYzSMAfu9c81zJHWOHXjgUYJ/pSBtvBIozznNADiD370beOvFHUdaUKcfpQICMZJoGD2oO4EYGT70BvT1oGPIAHHNMwaN2cDOCOwo6464oAM0Akdv8A9VLwDSYJOBQIu2V6tvKony0QOcKcHNdCfJitHPmpcWUww2B80Wehx9e3rXItHlSScY9eldt4K8Ja3qoF9Iy2GjrhpL27G1SB18sH7x469PeuuhinT92XwnNXwyqe9HSRuaPpmo6NZXsurO1vp+oW7WKXkucW7tgo0iHlUblc9iea1rXUNN0jR7bR9Qmhs723GJILghAzE53hujKeqsM56HBFK0ulS69faPqItb++aXLXUxAjuFKKU5BBBx/Cp+YnBIri9Q8UXGnRQw6Fqt/9iw2Le9t4isPP3Uzu+X/Z7YxzW06bxD10f4GUaioL+rm34kS08R+TfCaPTtJtmKnUJPmEnqsYHMz5ycL8q+tcve+KIrG0ksvD8UtjbuNst47g3dyPRmH3F/2E/EmsTUtZ1DW7sTX93JcTKm1C5wFA/hAHCj2ArKfO4huo/SiUlQiqe/5f8H8hRi68nU2X4/8AAJmlkmfy4VJJ4AUckUXSwpsEa7Hxh1B3AH1z3z7UltazXUqLGCisT+9OQq46nPt/Wr13bPGkcc5TnHl3GCFHqD/d9cd+1cc5uUryZ1whGCtFFKKKVU8+Mq6jG5f6H39utWoLkN+9MnzDouOQff2qOFPII2bo51G7du++PUdgMd+oqJiiDzo2xIG+ZTyDn+f16VtQxEqT8jGvh41V5nrmkaj4Ol8FuGiWwkSNY5YY8G7EpOBPFISGcdPlHTmsDXPG2p6rYDTI7qWPTI4hbylwGe5KnIduPlYjGQD+NcfFMDCsxDLuO3GOT9D/AHalzu2ggHHRF6D616NGlCT507+p51etUiuRq3oOcBEwfkU/wA/M31Pauw+G+nwzXt5qlxqK2strGY7aAxhllLDnIPUY4/H2rj9oLM7He3UgUANKsrmVIIok3yOzYCr/AF+lXiaSnTabsZYWq41VaNzsrqLV9W8WPp9rbw25gTzpI7aVdu5erZ53HoO9Wmsz4m1N4vEjz/2tcERw3S7Q4KjiNY+Btz375PWmeDdQ8M6TpM0eqr/xMZyAl6rE7YSeCpHp1wOTWRPFe+IvFUz6S0t95bBluGHliONeA7sfucDqa8qFCo5fu/dS69/n5nsTrw5f3nvN9O3yM3UrGbw3rd/pt40El1AvliVTvRWIBDfgD07Grtlo01/bpqkiQJp0fE92ZVQMy9UUcnzG/hGDnOelbOm6ZFbR3N5ocS63fwyYn1WSPzLe3kPaKNuZGz/y0fjuK11F691FcXNp9j1RkUJdXKAQX+Okdyq4CSA/clGOvUGur6zHn0etrX/4H9ehy/VXy2a9297f8H9CtrfhzSLrSY9QtIV0lLe2Xc07YDSEbtjA/M7nON30wMHI4H9K9LubCHxYjpcxfZbmz3JdzXKKk9q+cqiopw0eCccc9vm6+e6nYXOj30lnexNHKhxnacN7g/iPp0PNdeEqaODepw46k7qcY6Fal7U0EEZHNLXaecLRScs6xojPI3CqByaVxJEwE0ZTd0Ocg/jUuSTs3qWqcnHmS0GSEgKM7QTyalmjgVJzHHJEInAidpA3nLjk4HTmo/Mj5BIPtToraWTa8SoofIRWYAyY5OB3rOro1Jytb8TehdpwUL3/AACIvKQsSM74ydo6U6BFN44nDoVUnyxwzED7vPrUBCtBPCVfypMCRFYqwwc9R2zTp5TduJGcBgAuGPX3z3pNzba2Vt+o4xpRSlu77dB1wkEZiK742ZQzIxB8tvQ+tPht4XlM93MLO0Ujzp3TzPL3ZwyoPmkGRj5c471RkRlU4ZD9Gran0+6m0TSrTU/MK+TJPZqkgkeOJjlpEAOFXsQSCT6VzYitKjTSTu9rnVhqMa1Rtqy7GAb+5ubZrOCNAnmCUy7R5uRkcP1VTn7o706KNINPRJfs8kEx3FlB3RN0we5x6CnOj2zLFcOiMF3W88Y+VwPf/wBl9aZKMb2ctHeqxDoxx5uewI6E9znI6V4s5ynK8j2oQjBWiOkto5iYbhkVNgWKVEG09wDjgEjknnt0qRb0OFg1CQh4kCw3YUsRGqkJEE4ABP8AGeR7iqouI4cK8ZKH71uyleD14/hH+z39agZPtM7tDvZcZdpSBj1JPYU6cpQldBOMZrlkjUdWgleCVUVozhgHDKD/ALw4b8KCyjk7snp/eP8AgKalwiaAYtonZXCWkspYCJckyGIZxjOAcgnntUUBZvuHB7yNXt4es6kbs8PE0VSlZbEzcEBxkjpGvb60hHOXIz2HYUgPBEePdz0FNwp+6N3qzV03OS1zb0nxPqejWl1aWs5NrcoVeFmOFYjh1wQVYeo/Gs68vrrULlrm9uJbidvvSSHJNUyv+wn4E0RCPzk85H8rcN5jb5tuecZ4zjpms+WKbklqac0pJQctC7pum32sXy2en2rXE7DO1cYUf3mJ4Ue5rcF1o/hHP2AQazranm5YbrS1b1jU/wCscf3jx6VS1TxMH0+TR9Ft/wCytIzl4y2ZbrH8U0nc/wCyOO1V7LQ557f7VclrW14ALL87Z4zt7D371y1qqSvU08ur9TtoUHe1LXz6L0M+91C51C8kvby5luZpWy8spy+fQ+3p2qnKVkUo67l9O4+laOp6Zc6RMIblVBJzHMM4kX39Pp1rKlcgkdq5K1aNSMbdDsoUZUpSv1HWmgSatPiNozHGMtNIcYHpjufauu0/T7XTE226ZkIw8r/eb/AewrO8LH/RLw54DqM/ga1wcjrXG9zsRLnnNI7fLkHkdahaTPyjKgU2Vv3YGMUgLKNhR1xjkntVUyqmTnj1pfNwpAwBjP1rMuJs9CAOv1qoxbdkTKSSuyxeThVAz2qliWVsAYQ9Wz2p0UTy5ecYB6Ke49a6vQfCl7rSiUqLeyyP3rDGR7Dv9a7oUY01z1f6/wAzhqYiVR8lL+v8jF07Tp72dbaygMsjH+Ec/Un+tejaF4Rs9HaO5vALm/42qBkJ9B3PvWzo2kQ2q/Y9Ftuf+Wk7n9Sf6V2Gm6PBYfvD+9uD1lbt7D0FYVsRKp7sdF+f9djWjhow96Wr/L0/zItHsriJ2ubhRGWXasfUge/+Fa9FFYJWOkKKKKYBRRRQAV5X8WNA8Ra7pZutMvpZLCBT9o0tMDdgn58jl+P4T+FeqVhyXD219MVzw5yKiexUdz5EKAcZAA6U4ZUZPU8Yr2j4j/DaO+im8QeHoDv5e7skHPqXQfzHftXjQUZwDxj05pJ9GNoFccjGD+lOHAyKjOQQWpwzgkdBTAD16flSnGSKTofb3p/y9qBCDOev0FOG7kdz1phPYU4ZHX8aQxeh6UmPXtSnnGT0FNzz2zQAfj+lO56fzpvBP3h+FTKAF5wQTj3J7Y+vpQAqReYBg49TWhpejX+sXy2OmWkt1dEDKRj7o9WPRR7mut0T4dzPapqXii5OkacfmSLH+kzj2X+D8efYVu3niWGx086T4atV0ywH3in+tm93brk/XNCTewbEFj4U0DweFm1ySLWtXTlbJP8Aj3hb/bz94/X8u9Utb8Q6h4nv/sk8uyyhx5qR8KvHEajtxyT1xj1rGu7qRFVYvmuJm2Qqe7ep9gOTUkaLaWwijZn25YuerseSx9yarlFcyNSf/TnUhVwSIm4wV/ums9yxDCNcHPzxEZwfUVq3djLc2EuowZmjiRTdwN95AxIWRPVD0z2IOax2IdRykij7pLYYD0NezQnGVNW6HiYinKFRt9SoweO4jeW3MkKuGeLlQ4zyMjpn1qe6tFltYLuASGObKnK42y8s0aKMlkRduXNMePn/AFfHoHqOC4msJJTCWCzx+TPGr4M0RILIWHKqcc4rDEUOb3o7nRhsRy+7LYZZ301jJgfNGSC0ZPB9x6H3rea9s7i2G6aAI68+YeW9mHUHP68ise5tI5bUXlowaIsqPGAFKStk+XEmSzKqgZc8GoVDXNtFGLeNRDuZpY0JeQdTn1xXnNHpJk08kO54LcG4LEMkgJyp9/731q1YaRPeuJdomlkEjR722xyMg3Mgc8F8dFOK0INItNMWGXWN620yq/2e2kAnngkU7J4X+6cEcg+lZ9/qkuoFlcosLsjGCBNiSOq7RIyjjzCOpHU1vSoSqbbdzCtXjSWur7E+qiy+2GPSrt7qyAVluZYvLY5AJBXtg5H4UadZXOoTi1sYXlfGW2r29T6Cs93kkdIwA0jcJGCAB9fSuuh8ax+HtHWx0G0jS6dB9pu5MOu/uU/ve2eB712Trxw0FCGr/rU4YYeWJm5z0RiXsDaZK8V0j288eDhgcsD6eo96otqaByY4GwRh9xG1vwqVIp9WvZJr26ldz80ruSZGHXj/AA7CqF3atAxdAxtycLIGDA/UrxXLPHVZaf1+J1U8BShrq/68rF+O9S7ZQWYSYx5ZwOB2U9K9YsLPTtWjiSw1MWWhsUFhFFEAguCAGW6ycmbP3d3yEYxzXj2kadc6pq1jZWqFri4mWNB7k9foOT+FddfSSeFvFuqW1hLDNapK1vNbz8x3CDqrr9c89R2rSM5YqPs3uvuIlCGFlzrZ7nbW+kX/AIVjvNS0qATXCyCKYT5ja75J8pYxwXz0wM89qh1/xnp+n2Ulrq0EMd1cY83TvP8AM8kf3J5FBwuediZYjqRXJ6x44uprfytM86ycpsa4kuWuJ1U/wJIQNi49PmOOSah1HQdE1kWWkaTc2rX6W3mQ6jHlIpVH3hMp5Vix6nkVhKi6K5po3hWjWbUGR6pq2uWPihNXuJoxeMBLBNCo8iSLG1dg6FNvGPTrzWdqOtahq12bm+unlkPCg8Kg7Kq9FHsK09Ni+zaVPpdxDc3tjZxF57KeRVltH53TRMflTPYDKuCP4s1SmshpLW93FdQX1pdKfs1zCM9RwWB+44z9088V3YXFwno0uZfj/kcOKwk4a391u78v8ygp3ZaPhu6+tSKwYZHHtSSyebJCu5pHjG1pGADP7nFIn+skPvXowk3FOSszyqsYxk1F3Q5ZXt50uImw68Cmbt9ultGNixklUJJ69eTUkcv2e6SbCsBwOAcHHBweuOtMLSTW0UbStcTR5zK6hWYH6dcVnL+Iny/PsbU3+6a5vl3LBnhdWiEcQhMIVFK4cSdyT6GqoDqYneANJCf3bMmSh74pSCfvxvu9QMZ+tJwOnmiiNGKTW99ddRyrzbTWltNNBeN+/MiN16Z/WkLD1X8Uo3j/AJ6SfjR5n/TZvyrWxiMOwjny/wAjVmwvxYxzQNbrcWcrCSa3jbyzMyg7A0mCQgbkqOtQb/8ApsPxWkIypyQR69FH+NZ1KcakeWSNKdSVOSlFm5dWS3EER3C8gvXZYnCeX9slXmRoU6xrHnG44ziudurZrYLI7vc2ox5MiYBVh/C390/zxVyyu2spJUKu9tdKsV3AjbHuYgwby94GUBxzjmptWms7yPy5Jpy5xJN9mQIFOcCFFbgqg/iPWvGrYScJWiro9uji4VI3bszC2STP5lwZZJXG4Io3SOPXHYe9bdtoYNk11qjeTZqiSLDCw3PFICEmhyR5pVuGHbvUlk2m6Xp0FzEZJL2VSyE5D2dxG3yyEkYkR1PKDjrVHzJpty3LPMYlZoIg+ApJyQnZQSScDFFPCya5paJfeFTFQTUYO7f3Et7qTX9ukCwLaRZSWaFRuWScJsaUcZXcOqjjPNVQVC4d/lHQAYzVkwo+pW1rbSNm4dEAfkqzEDnH+eK6a/0mbwdd5vBazJgrvYB1mBHIA6jI6H/9Vdc8RSw8FyrfoccMNWxNRuTWnX/I5LYcAuML2UdKmtra4vbqO2tLeW4nkOEhiUszfQCupvdD0jVNM07VdMvLXTbBt4v3cMUtQPuqoPLueflHP0FamnQxx29tb2pm8PeH71jFNqk+Ptl4B3PeKI9Mj5R3PNWsWpQulr/X3mbwMlO0np/X3HnLnZndwRwR70sFvc3cgjt0MkrH5Y16n3J7D3NdFq2j2eousvhjTrqOCMOrvcXAdZmU8GE4BYYGcnA9KzbDxJNpOlzw2llD9p5IdxhnOf4/centWNbHaWp7nRQwFneoLcaVqWieVqI+zXKQPiRdu4Qv6MD1H+161Q8TeJ9X1FoBb5ihTaSIsli3ufTPSpfC3i+/sZ7uDUrc3EE7F3Lp8ynuAD94HP3avxaJHeXst1JbGytGO6O3D/OPr6D27V5rk223uekopK0dixD4hv8AWtFWwayicyLmeaYZUHseP4/cVh6zZQ6fBawxszMdxZ26np+Q9q6xY1ijWKFAsacKq8AVzHiZkE8KMcNsyMfXpRHcHsTeFyPsF2T/AM9l4/4DW1k5689x6Vi+GT/xLbhsA5n6/hWt5q5x3o6gIWALZ/Wo5pQI/lPsM96rTTEM2SAO59KhVnuNrEMsJ43Hqw9q1pUZTehlVrRprUcZS7lATvb8Qv1/wqxZ2bSyrHHGZrh+FHXn6Vo6J4dvNYfybRBHCv8ArJm+6o9z3+lel6FoFppG2DToDPduMNMwy34egrqlOnh1Zay/rf8AyOOMamId3pH+tv8AMxNE8Fw2YW91kiSXGVts5A9N3+Hau8stHn1AK02bezA+VFGCw9vQe9aenaHHbOJ7kiaftn7q/wCJ962K45ylUfNJnbCnGmrRRFb20NpCsNvGscY6KoqWiikWFFFFABRRRQAUUUUAFYGp/uri4kCl9q7to4zxW/XOeIbGLURPaTlxHLGMmNtrD6GonsVHcj+1/YG80vswu5uOAPcmvP8Ax98O4NZt5PEfhlFaZ18y4tYTkTA8748d+5A6/XrvXmnxT2kdpfTT3sUQAVZ34b03Afex75rV0C1u7GFZIBHFZc+XHjH/AHyB0FY813Y0tZHzPJAwwxB/2h6GouQM/gK93+IPw9i1+KbW9Bh2aivzXVovHn+4H9/+f16+HvEVbJXkHBUjoR2xWifRktFcA/Wn4GM0EAHHTFJimIPXApN2Cc04njj0poXcevf8/agAG5unJ/nT1iyyjnP1qe1trm8uYrW0glnnc4SKJSzufYV6Xo3w5tNLVJPFEnn3AUSLpFowyB1/fSdAPYfmaTkkrsaVzjvDXhDVfEsrppsCmKP/AF15MdsMQ9z3PsMn6V3Fo/hnwTIo0sLrGuAYbUJl/dQnv5a9vr196drWsXl7brYxpHZ6dD8sVnbLtjUdv94/5xXJyQu1yqQRSSzynCxxruZj6AURsxPQ2LvWrnVrkS3crTTN1ZjnPsPQURWBnikkMiw2kP8Arrp87Iz/AHR/eY9Ao5+grOWK103Lag63V0OPsdvJ+7jPpJIOp/2U/FqmuNSk1GwbzW/1I/dxIu1Ix6Ko4H9e9Wr9BadTN0qZLzz70qwmSR4OTwqA8YHYnv61df5zgfpWZ4cQiDUIcqdtxu46cjNXnWVH3JnK4Iqk9BNalWy8L30eqpr0upppmnJj9+PnlkI4aNI/4j9eOazdWa1udTupdP02WK2B3BcklR6nHA/lT7kXOqazFBsuDbFst5XOwHrjPGaki0PUND1RdT/teCPTlUNHK3zG4U5/cmLueMNngetdFOcaVnHWTOarCVW6ekUY88ZtpTFPbSRSYDbXyDg9DzULFSmcYTpgdz9a6bxX4osfEVrZW9poyW88C4luTISW/wBlR2Ue/Jrl2I+VAc4OSa7qcpSj76szz6sIxlaDuhFRoZhMsjRybSo2HBweCM1esLyXTBazWG22vbWXzorlB84OMY54x7Ywe9Ui+ZnNbGkaBc6rl2cQQgZ3MPmb/dH9aip7KK5poqm60nywZltMXLyP13F3A4wSckj0+lWzGdOu0/tGB8rtdraQlTIp5AyORkVFqUSaZqrRW9w0skZGGZR8nsexP6VZ0vTIrxlubqcyb3+dSTlj/tN2Jrkq4rS0NjspYVX5qmrK8FvJfSy/ZLULET0yW2DPGT3rastOtkh35WZwM7uCVI67RnnHcEcitL/R7a2TzDHDCD5ZZ+Ap5xyO/wDh6jnmp7wSams+mrLHIw2uSAS78jIA9R+ZricnLc7UktjZutStrRF81V+17fla3bhkI+Ug9u/uPSqun6Xq/i69ks9NtAluCJJQMLHHj+N3xgdz/IVvaX4Fh05IrrxTLJa+YN0OmwjN1P8AUf8ALNfc+naty4v5L6NNIsLNILNW/d6ZaZ2A+sr9XbgdaqMGxOViTRY9J8FQO2lsuoaqUKNqTJiKPjlYQfve7d/0rh9Z0PUdMY3GoRHMm2Zi/UiTOCfxBr1zSPCEdnNHqGvXC7kGWjPCoOoB/ug+nU1z3xOvw+kSS3EJhutRniW2t2H7xLWLcQzDsXdmOPTA6g10YefLVUYfM58TBSpSczyxHCwMEjgafeM+exChO+MdTVmO+ntoL+0sJfJtbxAlydoO9QcjBIyMHpiqeGzhkUn3NPAAx5mD6Ip/nXreyUm3LW55CrySSjpY6821l4xsJbZ1eDR7BY7azv5VVZllbHyPg4ccZx09MGs2OG08KaRqGn2V+2oahc4juZY+LaH/AHFP3n7bz0zgVlWjg3KPID5S/eCnaDxwPxpxfMUUnkxw3TZEkcT70I7VyxwcY1Undr8PmzrljZSpNqyf4/JEUOUt3J68AHNSgIGiV8rESN5HWm7guY8ZjPJHofalzsABO6M9Gr1DyG9bkkphdJN1utuRKRF5cvmb07E+hqIKuMBGb1JOKeFVeQoyfSlJNTTp8kbXb9SqtbnldJIjx6I/4NS5/wCuw/Gloq7GfMxNxH8Uo+opN5/56P8AilOzQSfWlYfMML+sg/FKGYgKc5J6N2H0FOyfWoyNuSoyD95fWk0NSHKzRCVQ7qZUKebH95c9x702Z2n2H5mKIFLsAGfHc4700PsGQSY/1WnFvQ5rP2cefn6mvtZqHs+hLJeGRJ0O5llC7Y2UYiwMfKarxpulSFyMN3/u0pY1oaToF5rhleHy4bS35uL2dtkMA/2m7n/ZHJqOWFKLtoac8601fU0PBeq2vh7X7LVvssl/5m6FIkQ+arZx8qdyfTrXVeI7PTr/AMQJJf2VxfavcP5kGhwSAHcRx9oYE7ABk7Qc4POBXNN4hstBRrbwz5r3LApLrVwuJ5B3EKn/AFS9efvGrdz4l0PQoYZvCmneZemMONUut/nQznO9ZCflkyOMDjmvNqx5Xzz3f4/5fn6Hq0Zc14Qei/D/ADNK7sksZ9P1XxbdQ3E4DrbaHbwrLDInRVgCnGB/Ex5HvXOat4kvr7VY49bt3+yRrtjtmbkx5yu9xgy49+KYNc0TRdFmvokmk1CckOdoDFjzjPRFznpSaTr2g694e8jVme2u7Vi7MoyAvbyz/wCymuWdRy9DqhBR9TN1vx9eLrdq1pB5UFsQNhP+vHcD0H0rQ1m9sPEssU+mWkyXsmGkDKFVV9JD0yBwMVSsdGlvA5dyLJm4ZowGkXsQDyua6SC1htIfLhjRFHOAOv19azNClY6RBaMs0pM1wP8Alo/OP90dquNyQOue1OL49aiLbjwSM+poAVmwDnk+ma4zxNJnVNgDYWJRn17110jbFJ4rktZiefUJWRSxO3nPStqMOeVjGtU5I3J9DmEek4BxmVixP4VbNzxkDLN0Xuaz9OtJktvKb5RvLEnoM1vadplxe3HlWsbSzN95zxge/oK6KeGt71TRHNUxafu09WU44MybpQWY/wAA6A/1rtNB8GyXKrdakxht/wCCEcMw9/QVu+H/AAvbaXtlkAur1uFJXIB/2R/Wu+03QSSk99ywHEQ6D6/4VFTFfYo6Lv8A5dvzHTwrb562r7f59/yMvS9IkuoUhtoktbJOMhcD8B3NdZZ2UFjFshTHqx5ZvqasBQoAAAA4AHalrmSsdlwooopiCiiigAooooAKKKKACiiigArH1UH7bEfWMj9a2KxtdiEohViQHDISpwR0wRUy2KjucvqBETM7sEQDqeK6Dw9MlzoMLKcpudemOhrnI9Pt00mKa4nkup1LK8khzuIJGf0rZ8NXsclq9oUMbq5dARgOp9KwhpPXqXLY0nikglEsbYI79j7GuE8efD6LxGkmsaJGsOroN1xbjgXHuPR/fv39a9HGCMHkVUmieJxLEfmXof6Vo0JM+SrmOSKZ43R0dGKsrqVII7EdjUQOR/P2r6F8ceAbbxjBJqWmBLfW0X51PCXIHZvQ+jfgeOniFl4a1jU9afSLPT55NQjO2SEjb5RzglyeFHuaSfRg12MtVZiSCoC9STXXeGfAGpa5CuoXkg0rRxyby5GDIPSNOrH36fWur0/wr4e8HRi41Mxa7q6DKwqP9Ft2/wDZz9fyFSajql9rEoubuVsJwEHAQeijt/Om72uLS9jWshpvhmxa08PWzWxkGJruXBupfcnog9v0FVdrycjcVySBnuepJ7n3NZ9h512xht1L+WMyMThUHq7dB+NdBbxQxptEglPHzAcfRQev1P5Vx1Ob7TN426FCTTFkQGTI3dAFyT9B3+vSsW/jkt4ngtk+zQuMSsh/eSj0ZvT/AGRgfWuxeeOHLhm3EYO4c/WsLVZUlXaiAqOFJ/U0U6jvboEoqxwF7GYSsajaB0UdBS28pSKTLHkYx61bviPOO4An1NU4k86VgANoBNelFXRySdmUPCs4jOohnwPM/rWxrWjarrOl217pkEyW1tvOoTySBIiQRtwTjOQQAoySa57w1A095foB0bd9Oa6a9ee306BNS1GYWEOfIt2ORnOTsX+tDi3awKSV7lSPWP7Cvx5iLdBAHCqdoZuwPt+tYmrarca3em7uljjByEjhTaFGc4Hrz3PJpmpTG4uBL5JiRkGxSecepqrcK0CxhgVIG7kYr0aVKEEnb3jzatWcm439246WGRGMbbU2/eUNkr9ahZtu0KMbujNxn6etbuk6OupzNFezLa3FwA8HmYCyH/bPb6Vf0m90vzYtM1rY2mhv3tw0JcwAZyqY55OBk1zvFtPlSu/LY3WEi1zXsvM5O0MT39vHcNtgeQLK/ovc11XiJm0awtI9J1JZrd1wVZgZIz/dz1K+/vXIXbQi+uGtd32bzW8neMNsz8uR64qKCPfJhQBgZP0pVY83vy+4dGfL7i+86HWtLdbe01mDMlhexgLKvIjmUYeNvRgRkZ6g8VkI7pkbiB3GcA11Wg6nqfhiPVbWLypLOTaZLS6j8yKUHodp7jHUelU11OMzll06zDZyCI+B9K5o0py+HVHVKrCPxaE+keHtY8Wyy3KbILGPBmu528u3hA4ySep+mTXV2k+leF4gugLvuyNp1i6hzIT3FvCeg/2m/WmRf2x4ths7OSO+kjiUCCG0CJAvo2OmevJ5r0Hw/wCAtP0ZRe6mwurvHO9twHtn+L8OKHBQ+Lcak5fCcnofhbVtdka4kElvbytmW5mYvNMfdup+gr0XTNIsfD8ZgsLYNOFy0mQCPct0UfrVfxF4s03w7bJ9tcxvIP3FpEoaeb2Cj7q+54rzHU9Z1nxcXiuSthpScmzhfCAesr/xH26VUYTq+SJlONP1On1/4g20Uv2bQ1TU76Jz/pBB+ywN/sDrI3+c15XrN9qN7eyzanPMZ2bdJJPjzHOMcAcKMcADgVvtdWWnWqtbTLbwkbRdsmWb2ij9Pfp9awZbH7Zd7tNiur3e4QORuaRzyPoT2Fd+HhSpPV/ecOJlUqR0TfoUUs5XiWRY0VGzsDkbnx1I9cU3YQMlI8ClDK8scgiV5YQQjuP9X64o3IPmY+Ye2RgD/Gu6Cnd823Q8ybjZct79bjgGkUM7BIx044/Ad6cwYRb0idYe746/jTdrSDzJXAGOCe/sBUwumMrOWlw8Qh2Fvk2jpgetVJzVuRXCPI787sIu0D5fummEGMEqMoeq0g/dHa33exqTpzWpzbDM+WNynMZ/MU/ORkdKaV2fMmMnqnatDS9Dv9VzJZQ5twcPI/Cr+Pf8KmU4wV5PQuFOVR2grsoUV1qeDY1H7y8aRuM+WAB+tNufCdrDHI7XUkCx9XmKhR9c4rm+vUb2v+B1LLq9r2X3nJ5pK1rzw9fW0InjAuICN2+Prj1x6Vj5rohUjNXi7nNUpTpu01YUmmk0hbmmk02xJCO21w44zw1STC2EUpVNjq4EBV93mKR3HrmnWVpJqF7FZwmISTNtBmkCIO+WY8AcVujUtK8LHboPl3+rDhtWkj/dwnuLdD3/AOmjfgK5qt+Zct7/ANbnZQsovmtbv/kEOg2mj20V74paWNnXfDpMLbbmYdjJ/wA8k9z8x5wKztY8QXesJFC6xWunwcW9jbLthi98fxN6sck1nSSy3V4ZLicyTzvmSWZySSe7E1v3cGl+F9Ma6u5llv5CFj7kL32r6YOc1y1cQoP+aX4L+vvOujh5VF/LH8WZ2i2dnf3JW7u1gQDIQ8eYO/zdvp1rRh8WaG+v/wBmb0GlCLyQwi/dM2egX0/2qXUNBhuNNXWNJmikTaJZY0b5Sp7jsCO4rnbDQI9SuFu40KDdkyYwp91HrXnTnKb5pPU9KEI01yxVkX9Z0iC11X7JYzJciQcw9XjGejeo96u6X4agtVEtxHGWBysS/dU/1NaVjY29ghWFAGbkseSx9Sf6VaxheSD61BYK3A9femSNg7R1J6YprS5OB371Ezgk8nGM+tACtjJOfz7VEHAOSPypsswVAW4IHPtWZPfNIfKtwSx43npVRi5OyJlJRV2S314F+QNz7VnhJGk8/GAcD6nFXLTTpJbhVCGe4fgADP5V3mg+DYrNludQVZZhghCMoh+n8R/Su2HLhlzT37f1+Z59VyxPuw2XX+vyMPQvC1xqKJPclobU8jI+Z/8AdH9TXo+jaGE229hCqKn32xwCe7Hua2NO0V5gJJS0UJ5Ax8zj+grpbe3jgiWOJFSNeir2rmq1Z1n723Y6qNCFFe7v3KunaVDYjcvzyn70hHP0HoK0gMUdKKhKxqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVry0W8h2ElXU5Vh2NWaKNwOYtLOOzM9vdRr5TSb92OYmP81J6Ht0NSzWPkycDBByCK2rm2W4TsHAIVsZ69QR3B9Kyo5Dak2t0D5K9GJyYvTnunoe3Q1m42LTuT29wZBsf/Wev96rGeDnkVTmgMTe3Y1NDNv8AlY/N6+tCfRgUHfybstHxg5rA11r2MTfZ7va10xNwDGPnUfdAYYbgZB9q3LlSLliM+9ZesqGERPes29Cji5bbOQ0Sc/3ZCB+TD+tRGCztoluL55HU5C2UTASN6F3GQin2yx9q25oc5rLurVXyCPempdxNdivdTzXdoscSxwW6nfFbQjbGD/Nj7nJptjrAUbZVwwJHzDofpVQXT2MvlugaLJIJ/hqtcYu5jNbvtkPVCOuPelOjzbjjUsbb6hvO0EnPTvn3qpclpY2I3cdTnpUdrBJnDYyeOldLZaTujjAiD5+d8+nYH6n+VQqaiU5XOEm0iaQNKzDg856nNPg0tkgkkZljjRCzu/yhV7k13V5PZ2Ct9oaNix5ULnH+BriNd07WLt9RVrg/2PFOsssOPuRnGwk4yVHcds11Up8zUW7GM42Tklc5DRtUk029ujZWMUvnjZFvznOeGI7n2rTSwkuJ/teozG4uDz833V9gP8iqdim3VWLKPm3AccfhWtdwSy2sscYIYgMpzgHB5Fep7OMNEeaqkpptmZq4a0ls7tANwJKnr05FY0hWUMsYZSzmQb3LHJ9Ca3roND4ehguY4mkEh2Hui9fzrFIDKc9B39KtU4tc0unUxqVZJ8sevQ3NL8XfY9JFhfaVFfRxABdx2ZIB2Fj14JzgYyQK5lyxUgMdp6+/1q6bS5az+1+WWgBxvxxmqzJtywwP7wpU6VNXcAqVqkrKZTMRNSWrLa3SySRebEQVkj/vKRg/jVoRZ7U8QZPSnKjzKxEcRyO6PV/DmjaTf+FJ59eEl7ZXaq1tqdvz5JVcbWwN0bDgHIKnGa86XTWS4eMsCVcqAHU7h6g1Y0f7Ta2Ny9lqN1YSjBJgYgSezL0P1po1XWGbL3wZj/G0KZ/PFcccJXg2qb0O6WMw8knUR7h4Sl0/SPDMMcapHtiDzzM2FD997HAxWBrfji71APH4ZVXGdj6pcJ8i+0Knr/vH8K4nSrFtTiWTUby4u1UgiF3Oz8R0rXutSt7eVLTIUqN2BwMelOGEafv6sp4pSXu6IzmsIrCa5vL+Wa7uD80spbdLOfdj0GewrL1DV2dViZUcj/V2sf8AqYv97++f0qXT2m8RazbaRct5MU8y+fIZAh8vOTgtwGx0z3qlfWMEFnZzgGPSLtpF0edU3Tz7Xx+8APy9v6UYio6b5VuFCCmuZ7GbI5vJ3a6kd7gjCtu/l/hUEF3LZXJRQs3OGjbJWQehAIp+oR3NpK9vcxhZQTk9c+49/eoY4jGMSOIgx5U8E/U9h7da4lds63Y3cW+rWsZtYszRxqkdlawHO8tz5rk/Mefvd+BgdaoeXcrJMr4i8jIlLkBUwcHP48VA1xKqNFbzYidRyq7Cvqo/r60KD5flsEeIqFKSDIOOlevhlWVNr7rnj4qVCVRfjYndJIbjZOPnxxzkGlOCpDfd/lVO5uJkkjVY8yFf3eB8oHTj1qXS3t5dQgt9XumgtGkCvdKpKp67sentWjxkIe7LV9bdzL6hOp70NF0v2Nbw3pU/iDWF0y3UyMVLk4yAi9T6+w9yK6O78Padc2sNtpETBlLBLktuaU9w46Afyrir6e1g1mVtDup2tYn/AHM7Axsw78ZyAefcjrXS+FLq4nnns49Ri023mjJkmkkwVAOdi+7dBXJi3XbVWnJpLodeFVBXpTim2M0LwzdX3iObTdQjeBbMb7oA5IHYAj1r0V2t4pI7KBYosp8iKwX5R3K+nqas6Lp+iPDqf9inN2YIhdhWBGVBCleTjjJ9zXmes6XqWias1/JezSXDsph1B448iQ/IEK9xtHOOCem3rXLWrzqtOR2UKEKKah1O9e3EbqYDtliIPltyG/z+tcxr+haeHj1a9ea8sbdt8kM26V2kZuAeywrkHgfXimz61qeqxRWVrnTNSRg8tpIVDzw5xvic5C+uP/11FNei01+KPSfP1VpCsd3PJJJPKvzchOijHJPTjpnpWJsQ2fiW5fGoai/l2JjbcEtNiiXdhYojnMwI5JAwOvFQ+J9GU2Uet6ei+RLIIplHygMwyrDPr0x6/Wpdc8S6ZoerzzWGb/VPLMQaSXfDa/7vHyt6qvXvWJpf2vVfDniHV9Tne4UokMW9sLv3BsKBwMcdK2o1JU5pxMq1OFSDU9jHdyjFZEZGU4IIqMzL6n8qbLcTSyF35Y8mrujSSjVEX+zItSRwUe2lBAdT33DlD6N2r1pVuWN5HjQoc87R2KgzIoIUlWJAJXgkdee9bWkaA+oKs88hhtDzvXlpB32+gHqa172yk1F4IdWuQrljFa29sBHBap1IjXuemSevU1zepWl9o5lsJXcW9ypAeJiFkXPUe/qK82ri5z0WiPUo4OFN3erNyLS9J1yK7i0+WC3nsn2owOQ/+y57+u73rmNV0tnuDaX0UkV1AfLAjwzY7Y7FaZoWl3lrqgudLuZMxniRkACZ/vdia7S109LeVp5Hee5bhppOT9PYewrkOsxtH8PG3tRHcu6wsd32YOdrH/a9a6RAECqi7QBgAdB7UmeAAcc9KjaQbzyM0DHO+BknioWfKkk8U15ATnHQ9DVeScKNoPPvQIl37Rz271WuLpYhuJHHIqpPeqcLH8xx1FQxwu86s4JfoBjPP9a3pUZVHpsYVq8aa13HSeZeMNxKxsMjB5NbOj6Dd6kVWNfLt/utIRx+Hqa3NB8HSS7Z79cc58juP949vp1r0TTNJLoiwgJCox5m3AHsorWVaFP3aWr7/wBf8MYxpTq+9V0XYxtF8PQaenk20JeZ+CerN/vHsPauysNISBllnxJMOVH8KfT1+tW7SyitkKxLjP3mPJY+5q8keK5dW7vc60klZbCInc1LRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC5tkuEwflcfdcDp/iPUVPRQBiRubVmtp0xGOcDnYPVfVf1H0p00JQ5HKnkEVpXFslygDZDKcq46qazVL2jNDKn7rqQv8I/vL7eo7fSs2i0yvMN0b59KydRG6KFvY1uzQ7VO0hlYfKR3rGvFzbRcc1DRSMdkz1Gagmtgy54Jq8QFPNRMpzipA5m8sBI/3fqPWo7e1SIfJBsJ6nvW/NByMISc4AHJNUtTtdRggljt4UW9A+VJ+ME/19O1Wm3oS0lqZ15d2WkWyXN/MIlb7gC5eT/dXvSeH/Fmo694khhsI47XSjCyyJNhmZ/4XOOeOy/WvO7m1v7nUZZL0zPcK22Uy/eXHbHb6Vs6VE8E6z6fdPBdD7jA4BPp9a73g0oXvr+BxRxjlK1tPxPUx4agEou7iZruYHkuAFY+uBxx2rP8AEkn9m6DeeZMDLqEf2eKN/vNn+I+wH9K5RvFniZUMX2uNT0JEChvz9aqWem6v4gu2uN8l3Jkq88rEquP4Sf8A2UfpWH1ZU/eqtJI39tz+7BanNy21xb3gEYYsWyue/wBPWujurfVLSzt31Gye0t5TtjkxwW9/Q/WvQNH8OWumSo7Kt5cFP9cy/NkjoOyAe3J7movEfiLT/s1xp0cEV/LMvlzZ5jXHTJ7sO2Oh71NXMpc6UIprr3/yQqeBiou7seU6hbPDbXk1zJB5GB5AjfczH1PpzXMQ3WGxJgDqGPQH3rr9Y0uW301nQs1ux6t95SDghvxqx4c8OaPDo767f3MVxKLebFrKu2K3fGEZyeTnqMc84Arec06V0202RCLVWzSWhj6HrF3pFxcy2wglmmhaNo7uLzEwRjcB2YDv+eRWWIZBDhI5HG/azAZw2OlVrOfd5azoS3sdv4fSuq0DxRd+H0vjY2sTTXUAgRpR+7hXJywT+Ju2Sfz6U8P7WEmoK5OI9lKKc5WMAKU+VpMH0HOKsLLJHBJCspgkkIxMqhjgHOBnpmmRxLHEIxyAMc07AQbH5Q9D6V68qanHlkeNGq4S5o7l6G78vzgYwwkGD2IPrUIIB46VCodeNu8dmFWEtrhlRsxIZMmNHbDMB1xVXhTWuhnyzquy1L1vqkltamKIANn73pVR7hnvY5JWJOOWPc1ArFsgjDDgikZlbKkF/p2quVdCOaV0n0LVjcbIbmwvJLr+zZypu7a32iScLyBk9s4rorfUZHkayu2ga61a2h0y0dnR1sLMPyJjjh8HhuucZxiuSXL4R9wYD5X9Pb6UtteXVmkyQSPGs6hJlH8a5zg+3qO9ceIwiqu60Z6OGxjpK0tUWdbNtZa1c6Ppccj6fZzsIZX2mVz0bc/pnpjsB61mmN3I39ASVUdFz/nrU5bBMkedp5Zf7v8A9anEgLuB4x+VVRwsKevUyxGMqVHbZEaoFHSlitLzULpLTToGuLp/uxp/X0HvXS2XhZJNKh1fULmaCykiEiRRxZlmBz93tjjr2zzWLb3uoaFNJLp001u02Y1nQZ3c5CZxgN06d6zljKc26dOXveZrDBVIWqVV7vkdXqGkW2vazpXg6zTTIorLTPNur4NtPnAAuWPUMPQ/3jngYHP2HgzWrxtrCFbVjmN5c8jsVT+H8a7fw14Zh02MO8Un2uVFNy0pDuz9SBjsD+vJrrIYo92VXG78a8prU9hbHmsXwwnEPly6pCRvD71iIYDuuc4x+HBqHV/h7qVlcSPpaPd6eeUWUgTD1BHQ+xHX0rvNattQmhB0+eZXQH/RbYqjzsSAo81s7AOScAn05rmLLWIPC6vY2U0GqagytPd3N1cSH7VMrFfIhABYsDxjgAcnrWlOtOm7pmVShTqK0kR/DHWH0PW7uOeLZH8qTRlcMFOeo9c816Vrnh+3uoDeWix3VnINxQgMuPpWJeW0Ot2N19k8oapCQZogVMkcgXJikx0ODiuZ0PxbfaeStvcMqE/NG3Kk+49aipNzk5M0pwUIqK6GZqnhxNFEcsGox6baWbiR7uZN8zH/AJ5ggD5T9STnmuf8Q+ObrU0lttLMlnZcjcPlklX0OPuj2HNdj4kutP8AEtxE+pwzLJEmE8hxsHvtPf3rHtfDegeYS0l3JkgjKqMfjUXsWcXpOiXuszpBboEi4zM33Ix9R1PtXReINRs7PQRoenM32K3PLn70shOSxx1Pf8h2re1q+htdNNjYQrawd9py7fU1x17Yp/wiE2rSsAJLxbS0X+8VG6RvoBgfjTi7O5MldWLGm32ly6ebeDRVurwDzRFK2URlGGlVsh3BHJi6ZGfasmzvprO4FzZTMko5YD7snrx3+nbtWNC7LIm8kfN8pB5z7VdjIO4Nxz0HarqT5tSYR5dBmrS6he6kl79oYtuyjbseUfQegrt1bVdetLeHUnEVogU7EUbpSP4j/d/CqXh2whl8y6lQPKj4Xd0HH3setdGc7ueM9M96yZohIYoraMRQIiKOgFG7g5OeefegsM8/XFV5XLDpx6E0DJHOF44znmq/mAUjzKAQSOBzWddXSxIc8sTwO5ppXE3Ysz3AXknbWa80t0xEYxzjcTwB/WmJFJcSB7jKqeSg64rrND8J3GpMrzq8Vv1VAPmYe3oPc11xoxgueq7I454iUnyUldmJpWlT39x5cERb/npITgD3J6CvSdB8Lw6YiSPmSfn5tvJz2Qdvr1rc0nRI7eJYLOFQF7gYRf8AE109np8dt8wy8p6u3X8PQVnVryqLlWkS6VBQfNLWRSstI+UG4UKvaEH/ANCrajiGAAAAOABT0jqcLiskrG4ioBTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqKaBZ02tkEcqw6qfUVLRQBiO8liWidflbOAvTP95fT3HbtWVdD/AEZc+uetdXNBHcRGOQZB/MfSue1K0lgTZ5cki9mjQsT+A71lJWLizDIyeO9WLHTbm/lIhQhAeZHGFH+NaVn4eluyJL7MEPaBG+dh/tMOg9h+ddLHGkMSxxqFRRhVAwAPSlGF9xuXYz7LR7ewAZBvm7yt1/D0qDVdLj1GHDEJMo+STGcex9RW11qGRK1stjO55Pr+gPes6SRpHqCYG4j74HQFu47An29K8+ubSayndTGyOpxJGRg5r6F1LTItQh2v8kq/6uUDlfb3FcLrfh37aTDIojvox8shPDD0J7j0PauihX9n7stjmr0Of3o7nm8uopPHiZNzhdu7BB/HHU10lj4ynk1Kyk0u1hjhtrTyLvTF+USKpLeZH/te34GsG9tLmxndPmhmjOGFUZma+VTJvEkZyjq214z6qa3xOFjWhoZYfEuErM7m+13UfESPHpyeTZGIykK43Og7uw6DoMDuarSaba2FoJ2iaeLYqTJNiJgTjPlY5WRDwQw6c9DXCadf3Wg3RSSSV7SQk5ViGBPUg+vqO9d5punf8JAx1F7tXt+IzImN5wOFA/hAHrXh1qTob6R/M9WnNVNVuU0kv9TdbYNJdiPOBKASFPHzt9Mdc1g+JvC81owuIT5lswUOif8ALHHfH93HevUre2tbeJ7SB4bdxH5kMG4bpjnAGOpJPesW8027uRfjWbeSx06MHzQHw7jHQN9e/Q9K0oVK1OcZ07cr6E1adOpFxnueRj7PFBLcSusUUeO2ScnAAFSSJ5cm3cCOoI71GqCGV1jl8xAflkAxkf40pPJOcn1r6enzP3r6dj5mryr3be8nvccOKcFyORkGq8k6RLudgBVK71O4utyCRo4Cqp5Y4BA7/X19aiviY0rLcvD4SVa7vZFwSRNIyRyhivXH+easwXFwzLBAvmy9EUKGYfT0rn1WVFEyqyqDgOBwDXqHgbxJpV/pr6NqVpZRzGJ1uJpAkMbWwHJL/e3jPbmuOeOcoWcbv8DvjgVGV1J2/E5i50jUbAyre28kG0jzFcYYE+oPP41U3/wxDjuTXTeLvE2mavHaafosMxs7WLyTeXbsZJgD8oGTnAxxnk56CuTWZQowG8vO0PjgnvXXh60nFe10ZxYmhFTfstV+RP8AP/z0H5UjGVAGPIoDZ6Y9famXGqbTMATIZH3Yb7qcYwKutiFStfqZ4fDOte3Ty/UViFHnKwUd81At1DJKEjO0scbW4Un2NUZbnzTiTgeo6D8KjKYYZwQehHQiuCeOm5e6tD0YYCCjaTuzpo9bvobWG2e7uHjtyTbxvIdsOeu0dq9XstEudYm0medrS00ZxDdx2cIH7x1AKq/+1u5wOmD3rw61uGjIXqvXJGdv0ra0K/uLLxFp0yyuTFcrIAWJXPrjp+NTKnTrr2kNGty4VKlBqnPVPZnoHi1dWt0YRssOmLKRPJDKyTszZUKcdBuIbd04+bNWPDvilbwjTrloTqRQpaESEJdhBjLMRlGY54IGRzjtXY3Zh1CIazpp3K4/fxqfmjbvkVwuo+HUhtZobU3UuiyKA2nW8jCQy5JBU/3c4JyRtxnnNcZ2lltU1Y6PLql7MNPSGQpJp9tbgStIGxs82TOQf7yjBB601ZrDVdCfXrS6t9CeaRvtN4I0aZFU4Me7+Fzjkrk1Ru9et9K0izk8WWFvca7GpWK0UiRgn8JJOQoPcnk1wWua5f6/crLeNEIYv9TbQriOEf7I/ve55oA64eLZJ9Xt9K8K2qaZDM6o04j/AH8gz1JOcdzk5b6VY8S6MZruW90d1knQ7LuAH5vMHVsd89aufDrwjLpsLeJtUQxpEhNvG33nY/xfiOn1NeW6lrV/Z+KdRvYbqWJpbp3baeCc/qP1qd9h7bmo+qXEMpSWJ0YHkHtViDWmLDarsfQCqTeONQmQNeQWt0B0Zo+T+NNXxXOVDQ6faRDqWKninqGhoXVvfagPMuGWysxzJNJ/CPp3PsK57xN4ih1Ka2sbCNotL02MxWsbnkknLyN/tMefYYFR6rrmpay4gaQ+VkbUjGNx+lULzRrmwYidF2pjcEYMFJ6Z+tNLWxLehUt2ka6STsG6+takXU+hPOaooMMKuQjK5yc5q5xsTCVztPDIA06Qqc5k7/QVrNKB945xzxWP4ePlaYwGBmU8Ht0q88mSR6+9ZGg7zD5h649DUEsyjPPHX0qtcXiw5yfmPQe1UN0t225yVjPQdzWtOlKbtEzqVY01eTJZrmWdisXGDgt2X61NZafLcTRpAhmmbuOT/wDWrU0bw5c6iwCDyrbdzIBncfb+9/KvS9E8Ow2CiCGDdIeSvc+7N/TpXQ5U6Gi1l+X9djkXtMRvpH8zA8P+DooCt3ebZJM7gSNyqfQD+I+/SvQLHSiw3SK0cZwcZ+Z/rV+z0xIWEkmJJR09F+laax1yylKb5pu51whGmuWKIYYFjQIihVHQCrKR4p6oBTqChAMUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBGaKKAIZErOv7CO9i2Pwy8o4HKn/AA9q1yM1C8dAHnmt+Ho78G3udsM8S/upMcEeme6/yrzbVtMnsbhleMxzx9iOo/qK9/u7OO5jCSDocqw6qfUVyGveH49Qtmtrr5LkD9xOvT/649R2rehXdJ2lsc2Iw/tFzR+I8RuJo502yIc9CBxiuj8MXsMFqsVlIlnqiZXJ/wBVfJ12nqFlHbPB7Vlaxo9zpl7JbXMZSVPxBHqD3FZiu8WdpIzwRXfXwdPEQ0PMw+PqUJ2mvU7WEadoepxa5rN/JNqKkSxxQnMjZ6Bc9PqfyrG8W+NdW8XS7bxhBYo26OziPyD0LHq5/T0FYU0rTSFm5duvUkn3J5NNlt5Yl3OhAyVz7+n1pYfCU6Nubf8ArYvEY2pWvyK0f63K7Hj0FQvJipGqEBTNGsiOyMSHdCPk98HrXRVmoK7OajT55WQy7to5LZJw4Vx8uT90n09jWWeCQQQR1BrWLpFH82CMgFCMiX/A+9aekaVp/ihprL7SLHVyB9g8w/uZyOsbn+Fj2PSvGrLlm7nu0HzQVkc8Lgy+XDIMIAV/dDBOemfXntTBayGRY22K4OTubiPHdj2qy9tLZ3c2nahbTW9xAxV7bbh2k6AEn9O1I6ywARTRlww3oBzuY/38feArI1N7wdP4flv3g1yILlS0UzO21j/c2DqTXb+KzoOn+H8XcxN7MB9n08QhXiGfmVh1Ve4Lcg9K8mjj8oh3Pzg5AU42nqPxp01xJPM80sjPLISzu53M57knuaJXk7thFKKskOknYjYCQuemar5z/hTgpY8ipFj5zj605ScndsUYpKyIfL3545FTQRn7jJkMew5H0qeCHJ5+7nr6/StOCxw4JB60iirbWZ3qoYHBx8tb+jaLHd6zpkcrgQG7jEpBx8m7p+HFOgsuN2MbeeB1HsK2UghRGXGVbrgdP89aLsdjUu59S8N6zOsUjRTRuVdD91x2JHuKsXviFr3S5WhCWN42EE2Cyr6kD19D0rVnhj8Z+HorlXC61ZjynbtMo6Z9c/oc1wF5JcWbG3uYXiZTyCOKW7FsU08JXt7NI32y3nMh3PK05LMfU5GSa6/wv4P03TJ1urwpeTRnKogO3OeCSf6CsGy1SOPHzqBXQ6fqj3LeXao00h4CgcGm0CZ1WpXs9/5NnDtM0ziKGNRhVz3/AAGST7V4Br9nFa65qFqhMsKXEiBj/EAxGfrXvF7PD4B8M3XiLWJFbVXjMdpBnlXbgKB69yfQV89XeoYkZoyWmckvMfU9cD196EDM2TzLC6aHOVIDYPbPr71K0ry4BI+g6CmFGmIJXcf1qzDBuaNX+RWOA1XZLVmd29EWNIikt76O8+zRXawNuMEhIEnscc0/VryTVr2a/uIoIZJXJEUCbEjH90D296af9Ek8yBmVkO1ww6f4g1pRxwaoP3ahbrGWjz973H+P51KqJS5rFODcbXOfWPLYZto9T2p8UpBKkYIPNXbnT5rWT94pHPHGc/j04qs1s4OQuR7Vu4e0V4mCn7N8sjrNDm26WrE5JYnmia5aQskI3Hue1Z+nrKLKOEjauTub8e1dFpeiT6m5jtkIjBAMh4VR7+59KdLD/aqaJE1sTb3aerZlw2u+cABppWOBgc/hXcaB4LMjLPfgEjnys8KP9o/0FdDonhm203a/ll536tt5PsAPuj9a7Ky0oAK1wi4HSIdB9aKmJ05KWi79f+B+YqeFu+etq+3T/glDTNJ3KvlL5cQGPMIwSPQD0ro7a0jt49kSbR1PqT7mpkjqdUxXMlY6xqR1IBilopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARumaqXFsk8ZSQcdiOqn1FX6YyZoA4bX/DsGpWv2O7UK4y0Nyq/d/+t6ivHNb0S50m9aC5j2N1Vh91x6g9xX0lcW6TRtHIMqfTgj3Fcp4g0C31C1NpeplOTDOv3kPqP6jvXRh8TKi7PWJx4vBxrq60kv61Pn87kYEcEHIpoYJE0UaBFdy74JO5vU5rd1/QLrRrwwXCg5+aORfuuvqDWC4wcGvYXJUtNanhqVSnem9O6ImFQXqyWsnkvGUkIDfOOx6Yqya6vVtKi1a3AbCTov7qX0/2W/2f5Vx46rKCSj1PRy+jGo3KXQ8+53E5JPc0voTkY5GDjmpLi3ltbh4JkZJEOCp7VFx1NeUewdJqviCz8QeHQmswzNrtmAtpqEOMyx/3ZvXHY9a5gTcHDHnkknJNSlSDg8DqcHNRmAffjPI6r/WkApJY+9ATk9evWnxfN1Gec8VYWEkk7SD6Y5NMCFImJwAfwq5Da7h93j1zVqC0OcgcDqP8TWva2ahQWHPr6/SkBUt7BiA2Mnvn/PFa9raBVC9R+lSxRIitkAY55pWmAIYH5cc5oGSACM44+p61VN1t8yMqSqnav0/zxTLi5MnJPzAdfWqOWL7zIcE4Kdj3H60AXRruoaJDJeaecyJgsh5DrnkYrTl+Imn6pbLHquhrIxHLxyZwfT1rn55AIJEYcMhGPwrh4Z3tZMBsj37/AP16fLdXE5Wdj0qLWfBkUxdtPvCRyV8wEVt/8LM07Q9PSXSdD8tnOxGYgsf64ry2zmhEbSpH85/vDge+O/0pp827dtsm0uMbieTVRpt7ImU1Hc0vEl94i8VzPq2owzzxx8KijKQjt0rm1Rcbyd3v2r03SPEyaX4KfRIYGl1DzmZZiAsdpwPmB/5aNnoDwB+VeeyJc6jqLKge5up3LEheXYnk4HHWqgmruRM2npErxSDeUIA54PrVlW2AgxhxnIyenY10/h3QNJHm2urWn2i5uo2SKUSEeS+DjA9c9c/hXN6X5dxLi6VnCA5A43MDjB9BWbfMzS1kWrSCa43i3ZfI2gGaRQAnPIP978KuQiK2ZLXToZZbiYhFZULSysf4VA6Z9qjnvDKAsaLsX5VVRhFPpWjZXIsJobjSTc21w8HlT3DyDzN5+95eB8qngevFa06E5apGNSvCGjZ0OrHTtF8O6Tpd9Asmsxxub21Vw/lszEqrMOAQPTmuVhtgDkgZ67R2q7pmnXN7ci0soDJKx+Y7eTznJPb616ToXhK10pVuLsC4u/zWM+w7muxezwq11b/r5L8Tz5e0xbtHSK6/1u/wMHw/4LnukS51AGG3PKx9Hcf0HvXoum6WixpDaQLHGhxnGAv+JrQs9LklPmXOVQ/wfxN9fStuKBUUKqhVHQAcCuOrWnWd5/cd9HD06KtHfv1K1pYR2wyo3OfvOep/wrQjjpyR1MBiszYRVxTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAay5qrPAksbRyLuRuoNXKay5oA4zXtDgvbU2d6u+Bj+6lA+ZD7e/wDOvGvEfhy50O8MM67o25imUfLIPUe/tX0fNCsiMjruU9Qa5nWdFgu7VrO9jM1vKTsbuh7EHsf51vh8RKi/I5cVhI112ktmfOUilMg13a5KKTjlRn8qyvE/he60K68uUeZC/MUyjhx/Q+1R69fXFj4XNzbOUnxGgcDlc8Ej/Pet8dKM4xlHbU58ujKEpwmrNWLeq6XHqcAjZgkqf6uT/wBlPt/KuFurWWzneGaExyIdpHUZ/rRp/iy/s3AuJHvIm+8kh5/A11rrZ+ItOjmgl+YA+VJ/dP8AcYV52x6m5xh5BbGeewp6HGCSFx3xUtzbT2lw8Mq7JF+8D/P/AOvUOAepbPp3JpiLEIEkmAAGPIArWt7TPAGc+vU1hA+jbQOc1v6LfecBFNtB42N/e+vvQBpQ2425644PoKthliywOCe9QNOqEhSCB39TVWS4aQjJ6DGBQMsTXW5sLwOmKgeQsOvI9KgZj3OOcfjVS5v44lwrg5OOP880AXJJgFx79B61FHdRi4EW4MTw6qM7PTJ6A57VVj0+4uv3t07xIRgRjhiPf0/nW7peizXsywWUK7VGQq9T9B3NAFN0Djae/TBxXKXFlH1wy56jHSusvQ+n3k1tPC0csTENE45Xvg1k3b5uZwPuk5P6V14RKTaZx4yXLFNGTb28cQxlmB7EcVp2kURk5VeRjG3tUce8oXTCoOCzdKX+0PLAWO4VD3OOv446V1SlTh7qaRy01Un77uzWIt4LVv8AWBMc8EgfhTdA1q30y5VZhshaUSrOqZaNhxg+qkfrVRdVuvLKMUOejBev9KqBA3DYA5PI70PDxqR1CWKdOSseky2VprEv2q0UQyuBJHtI2hhyGVhwaqeJPDPgzTbSO9+1XTahcs009tbyZEzt1A/uIDznv0rldL1m90mOSOykXY4+7Iu4KfUD1pYVuby63Ze4upT94/MSfasKeAal770/r7jWpmMOX3Fr/X3kc4hPlR29uYLeLJjjL7mZj1dj68D6AVu6D4Vu9axLIpits/649/XA7/Wui0LwVHbbbvVtrOPmEOeB9fWvQbHSJbtVaRfIth91QPmYew7CnVxUYLko/f8A5f5smlhZ1H7Sv93+f+RlaRo8NjELPS7Yf9NHJ+97sa6ix0tLXDsfMm7uRgD6D/Jq9b2sdvEsUSBEHYVZWOuLVu73PRSSVkMSOp0jxTlUCnUAAGKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBrLkVWmhV1KsoZT1Bq3TWXNAHJ6vpEM9pJZ3UXnWcoxubqp7fQjsa8g8U6MY9P1LSUcyPCh8tuhYr8wr6CliDKysoZWGCD3FeQ+MLdbPxVdogwuEcfioqXdKw0le58+EkpuHf86v6HrUukXvmZLW7kCZPb1HuKveItHOn6w5iX/RpyZIiO3qv4GsG4hMLg4yrdP8KAPVbqCDWrONg437M282O3ofb+Vcjd2UtpcGKUFWU8eh+h9K6DwQ66l4eu40kH2jT8SmMnl4TwSPdSfyNWdYiFxZoxTc6MArdwD1H0pD3Ry9pZvdyBFUY5yQfu1uWcMNgdw2tL1LEZA+lAPkwiJAFUDoO9MVSccnk0wJZZjI5fJ+Y54qvLKkI+Y/h61Wur5YBsQgt90HHU+gFRwWLTkSXpZcn/VhuW+pHSgBQ91fSlIE+QYJZjhQD6n+laFtZ2tj8w/ezY5kccL/ALo7U8MEjEaqI4l6ItRCdRIoOCAckGnYR2nhfwXfeIHjuJkCWYOSWOOOvI9x29+1emedo/hOJltkWS6YBWYAZ+nHQewry34ca9fGfXYBcSBWMblSenGOPT/9VdomgXGpFZTHHGOxlc5PvSSW8gbeyOA8SW0useItQ1ObCW8mx2lA24AABAz3wK4ZmNxdfLlPNkxjPIBNdf48sNR0/V3guQzWUJC2+05jGQCcHuc+vNcbg53A4YHIIr08JTSi5J7nl4yq3JRa2Ogj8O3+tN5FkqxW0R2NNIcLn2Hc/Srw+FM7plNZh8z0aBtp/HOa6Xwxr+m31nb2rzQ293GgUxs21W91J7+orsI4kRNzvGq/3mcAfnmvOlBxdpbnpRlGSvHY8KvfD+p+H75LPUYAqzZMUqndHJjup/mOtQJES7KDjHrXpvjTX9PvLAaTZeXdP5qyPOBlYyOgU92PQkcYqpofgbzsXep74YeoiJ+Y/U9h7da7sPU9jTbm9Oh5uKh7aoo01d9TmtC8N3uszBbePEQOHlcfKv8AifavUNE8PWmkhYbGJri7YfNIR8x/+JFbOm6W08SxWqLb2acB"
+
"wuAR/sjvXTWdjBZxeXAmM/eY8lvqawr4mdbTZdv8+/5HTh8JCjrvLv8A5FGw0VIWE1ztlnHQfwr9PWthUz1p6R1KABWB1DFSpAMUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADWXNec/EbQpS6a3AC0aoIrpR2A+6/wBOx/CvSKY6K6lWUMGGCCMgj0pNXGnY+bNTsU1CzNtKABkPDIeqN2/D1rzi+iljuJbW6QxSI2Ch/wAa+gPF/g5tEd76yQvpbHLJ1NuT2/3PQ9unpXnmtaBHrEPmKyJcoAI5T/EP7p9RU7Fbnn2mX02j6lDcKx2q3ODwVPBH5V6ZebHs3KsCnBB/vDtXBf2FepeiyurSbDnaGRd657EH0ruZYWt9GSJ/9YkSKec9MUCRnt657VGSAc0pfsOtQvIFPWmIbHBDCzSqCztk7n5K57D0pTKF6de9Qs+VGTz0qJmI+UHOetMCaS4LcZ4Hp3psQeWUJGMk8Ef5/Cm29tPdTiCCNpJe6r2HqT2Fakd5b6DuWzSO+1Qf8tW5hhP/ALOR+VXGLk7RJlKMFeTNrwFJHpOu67HcuFMaxKxbpu9q9z0eOCe2jmb53YAjPb6CvnvwvHbSXM00tyDezPvmeY/MW9RnjFerQ+KdL0K3L3N0s80URKQQuGdunHoO1R7OSna2o/aRceZPQ0/HeiaN/wAI3qt/eKsYEDMWHd8fLj3zivnEo8bhXBDbQSPrXX+L/F2q+J7ki7fybSM7orWM5RO2Sf4m68n8MVy/kcliCARwO9erhaTpxafU8jGVlUenQjQEc7QeQQSPetfStLu9WuhDbpJKx656D3PpW34d8GXerlJ7stBZjo3dh6KP616ZpOlRW8Qs9Jtwir9+UjA+pPc1FfFRh7sdX+CHh8HOprLSP4syNE8LWWiKk0y/ar5vunbnafRR/Wuys9GeZhLqHb7tuDwP97/Cr1hpkNn8y5kmIw0r/ePsPQVpJHXnNuT5pO7PUhCMFyxVkNSPgAAAAYAHQVOqYpQuKdQUHSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBkkaSxskiq6MCGVhkEHqCK8k8X+EZNCla9sgx01zggcmEnop/2c9D+B7V69TJYo54nilRXjdSrKwyGB7Gk1cadj58VyM4yp6EDiq98uLGYY425H512Pi3wnLodx9ptQX09zw5PMX+yx9PQ/gffjb5z9llXqrLkE+lSUc5I+KrMxOQcDNWpI8nimR2jSPtUMzHoFGTVElUEBclgeOKvWWnpPF59xN5EH98jLOf9gdzTFMEMyrhZO0nOVUe/r9K31id3jug4d1IZGxkZHp2FTWcqaTa3Cm4zbSexTuYHjtfs0Nu9tayD5lb78v8Avnv9OlYl5btbTqxZijHnJya7GZ5bvJlGXZ97t6n+lczq0iyzLCpDbT8xHarwM5uvaOq6mWOUFQblv0IbYKzDKj5RjpyatgIhO1SFHcetU4xg8A810GheGr3W5gVXyrcH5pmHA+nqa9ybjFc0nZHhU3KT5Yq7MqK1mvbhIbaJpZX6beSf8K9A0HwVbabGL3Vv31wOViHKqff+8a6HR9DtdLAtdOtzLcsMvIep9yewrq9P0aO2cTTnzrj1PKr9B/WvMrYqU/dp6L8f68j1aGDUHz1NX+C/ruZ9npU14Fa4DQW4+7GvDOPf0FdDBbpDGsccYRF6Ko4FTLHnk1MqAVypJHa3cYkdSgYpaKYgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOaGO4heGaNZI3BVkYZBHoRXkHjXwhJocMs9qjyacVJDfeMRPY98eh/OvY6QgMCCAQeCDSauNOx81WHhzVNWs5by2tJRZQruluNuQQOyD+JvYVYvdI1CbR5jBYzaXBGW8yCdCLlwAMMfRWHYcDvX0YqKqhVAUDgAcAVia9or6hsuIjmaMYx6j2oi3CSkugppSi4ny+EaNh0GDxjpVuG9nt1KwysnsvIr0DxJ4MadJL2wiAlyTLAq4zjqVHY+orz9rZ0fBzz3xXt03TxELr7j5+r7XDTs9Oz7kk2pXMxCtPKUPVRgVBFbtLIEjRizHAUckn+ta+kaBeavceVbRcD78jDCqPc16VoXhqy0Tb5UZur5uN+3J/wCAjsKzqVaOGXLFa9l+v9XNKVKti3zSfu93+n9WOb8P+Bgqrd6uNqjkQdz/AL3+Feh2GmS3kaJAv2ayXgMBjcPRRWpY6D84nvsO/aEfdX6+tbax9OOleXUqTqvmmz2KNGFGPLBFS0sYbSLyoIwq9z1LH1J71bSOpAgFOqTQQDFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBnX+mifM0ICzcFu2//wCv71w2peHdGuJ3klsts24+YVYpk+4r0qq9xYWt0QZ7eOQjuwoTlF3i7ClGM1aSucfpOlmeFYLCJIbdThnA+Uf4mursdMt7BD5YJkI+aRvvH/61W0RIkCRoqqOAqjAFOpJdx+ggAFLRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=",
fileName=
"modelica://ML/../MagLevApp/julia/paper/Arduino_Uno_-_R3.jpg")}),
Diagram(coordinateSystem(preserveAspectRatio=false)));
end ArduinoIcon;
partial block MagLevSchematicsIcon
annotation (Icon(coordinateSystem(preserveAspectRatio=false), graphics={
Bitmap(extent = {{-92, -98}, {100, 94}},
imageSource=
"iVBORw0KGgoAAAANSUhEUgAAAiYAAAKQCAIAAAAkPyZ5AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAGXRFWHRTb2Z0d2FyZQBnbm9tZS1zY3JlZW5zaG907wO/PgAAIABJREFUeJzt3Wt8E1XCBvBTSbmYIteUsIC0yOpCbQABWShYlRTkJoIu2NYVWEUFIaCs64q7re2+gO4uL0JZ8CfeVm0q9YIoBYEqIC1YUS6pICDSKhZCw92GWwN9P5z1vLNJm06SmZOZM8//00w6kzmT6eTJnDlzTkxdXR0BAABQ3zXRLgAAABgFIgcAADhB5AAAACeIHAAA4ASRAwAAnCByAACAE0QOAABwgsgBAABOEDkAAMAJIgcAADhB5AAAACemaBcACCEkJiYm2kUAUB66cAQ/uMoBAABOEDkAAMAJIgcAADjBvRwtQg046BTuSkJwuMoBAABOEDkAAMAJIgcAADhB5AAAACdoPgAC+uyzzyZMmBBkgSZNmrRs2bJVq1YdO3bs06fPrbfeOmzYsGbNmnErIYAxIXJAQJcvXz558mTwZaqrq+lEUVERIaRt27YPPvhgdnZ269atVS8fgFGhYg2AEEJOnTr14osv9uzZc9OmTdEuC4CwEDkgvqZNm5r/W/Pmzetd8tixY2PGjPnyyy85lxDAIBA5IL4XXnih5r9duHDh8uXL+/btW758eXJysnRhr9ebnp5eW1sbrdICCAyRAwYVGxvbo0ePxx57bNeuXU899ZT0T4cPH16xYkW0CgYgMEQOGF2TJk3+/ve/33vvvdIXCwsLo1UeAIEhcgAIISQnJ0c6u3379vPnz0erMACiQuQAEEJIUlJS586d2ezly5d/+umnKJYHQEiIHID/uP7666WzHo8nWiUBEBUiB+A/mjZtKp29fPlytEoCICpEDsB/uN1u6WybNm2iVRIAUSFyAAgh5MSJEwcOHGCzTZo0uemmm6JYHgAhIXIACCFk6dKl0sFYBw4c2KJFiyiWB0BIiBwA8umnny5YsED6yqOPPhqtwgAIDJEDhnb06NFnnnnmrrvukjYWGDRoUGZmZhRLBSAqDF4A4nv77be/+uor6StXr149e/bs999/f/DgQWl9GiHk17/+9fvvvx8TE8O3jACGgMgB8X399ddff/11o4vFxMSkp6cvXboUbdUAVILIASCEkP79+7/22ms333xztAsCIDLcywEghJAdO3bMnj0bPQ4AqApXOSA+h8Pxu9/9js3W1dXV1NRUVFRs3rz5o48+unTpEn39008/ve2227Zu3dq+ffsolRRAcIgcEF9iYuLgwYMDX58+fXplZWV6evoXX3xBX9m/f//vfve74uLiJk2a8C0jgCGgYg0MLSEh4dNPP+3Tpw97ZfPmzQsXLoxikQAEhsgBo7v22mvff//9a6+9lr2Sk5Pz448/RrFIAKJC5ACQxMTE7OxsNnv+/Pm5c+dGsTwAokLkABBCiMPh6NKlC5stKCjYu3dvFMsDICREDgAhhDRv3jwrK4vNXr161W9oagCIHCIH4D8mTZqUmJjIZt977z1c6AAoC5ED8B+xsbHSWzh1dXW40AFQFiIH4P/hQgdAVYgcgP+HCx0AVSFyAP5L4IXON998E8XyAIgEkQPwX3ChA6AeRA6AP78Lnffffx8XOgCKQOQA+MOFDoBKYvxG4YWo8Bv2GAcFdAr/yRAcrnIAAIATRA4AAHCCyAEAAE4QOQAAwAkGolaAy+X68ssv6XTbtm3Hjx8f3fIAAGgTIkcBa9eufeaZZ+h0UlISIgcAoF6oWAMAAE4QOQAAwAkiBwAAOEHkAAAAJ+jwRgG1tbWXLl2i002aNGnRokWo72C0bkJ8Pp/JpHrTFQ5b8fl8hBAO+6IXRvtPhlDhKkcBsbGxcb8II2+MxuPxvPTSS2pvpby8fMOGDWpvpaysrKysTO2tAAgDkQO8rVy5csWKFWpvZdWqVYsWLVJ7K4WFhYWFhWpvBUAYqFjTBENVR6SlpRUXF1dXV1ssFvW20qtXL5fLVVNTYzabVdqEz+eLjY0lhNTW1qJujTLUfzKEAVc5Cqiurt79iwMHDkS7OJrm9XqLi4sJIStXrlRvKx6Px+VyEUK2bNmi3lZYldq3336r3lYARILIUcBrr73W5xf33ntvtIujaSwDVK1bY3mmat3ap59+SidWrVql3lYARILIAa5YBrhcLq/Xq9JWWJ4VFxfTRmVqWL58ud8EAASHyAF+WK0apVKtF6tVo1RqUVZeXu52u+m02+0uLy9XYysAgkHkAD9+GaNSrRerVbNarYQQlVqU+VWmoW4NQA5EDvBDM8Zqtebl5RFCiouL1ahbo7VqNptt2rRphJAlS5aoUbdGK9McDkd6ejpB3RqAPIgc4ITVqk2bNm306NH0RcXr1lit2tSpU8eNG0dfVLxujdWqDR8+/IEHHiCoWwOQB5EDnOzevZtOjBs3LiEhgdZ6KV63tmPHDjoxceLE5ORkOq143RqrRktNTU1NTfV7EQAagsgBTuj3vtVqpUlAa70Ur1ujGWaz2ehzpg6Hg6hQt/b+++8TQux2u9lsNpvNdrudvQgAQSBygAefz7dkyRLyS9IQQlitF7v6iRyru5s6dSp9ZcKECXRCwac1Wd3dE088QV+hEy6Xy+PxKLUVACEhcoAHdjeFJU1ycrLiLcrYnaGJEyfSiQEDBtAJBWu9WIs4VqXGJlTtUgFAAIgc4MGvVo1SvEWZX60aIcRkMtG6NQVblNEWcbRWjb7C6tY4dFcKoGuIHFAdq1Vj1VyUsi3KWK2aX59DdKNKtSgLrFWjULcGIAciB1THEsUvcpStW2O1aizJKGXr1ljVWf/+/aWvs1nUrQEEgcgB1bHuL9m3P0NDSJG6tfXr15OAujtCiMlkUvBpTfacqd/ICxaLxWazEdStAQSFyAHVsQf1AweVYdc9EdatBbaIk1LqaU3pc6aBf6UvqtpdKYDeIXJAXexBfb9aNYpd97ArofAEtoiTUuppTelzpoF/ZS+qOkgPgK4hckBd7Fs+sFaNKNeirN4WcYxST2sGtoiTYnVrHAbABtApRA6oK0itGhV5i7LgtWpU5C3KAp8zDUT/pFJ3pQACQOSAiqTdXza0TOQtylit2tChQxtaJvKnNQOfMw2EujWA4BA5oCJp95cNLRN53RprY11v3R0V+dOabOSFemvVKIvFolJ3pQBiQOSAiqTdXwZZjF4DhV23RmvVgtTdUVOmTCHh1q1JR14IvqRK3ZUCiAGRA2pp6EH9QJG0KGMpVW+LOKm0tDQ6EUbdWkPPmQZiC6BuDSAQIgfUEtj9ZUNYrVcYdWvBW8RJRfK0ZkPPmQZiXSrQVQBACpEDagns/jIIeiXkdrtDrfVqtEWcVHhPa8ppESel6gDYALrW+FkKIvF6vatXr+awoVOnTsmsVaOkLcpmzJghcyvBnzMNNHHixJkzZxJCtmzZMnLkSJlbCf6caaBx48ZlZ2fTFVNSUmRupbKycu7cuTIXjtDixYuDNIIAUFGd6KqrqysqKlwuV35+fn5+fkVFRUVFRW1trYKbWLBgAfs8k5KSwngHbgeloqKC7/8Xqa6ullk2Wrdms9nk705OTg7divwDSuvW7Ha7/K3QBnVWq1X+KrRuzeFwyF+F7QsHFRUV8gsWEr8NqbQV0K+YuoD/EgH4fL5vv/121apVy5cvp7+CA9nt9ilTpqSlpWnh515MTIx0Vr2DUllZmZiYqNKbB7LZbHv27JG58Nq1a0eNGkUIqa6ulnlQOnbs6Ha77Xb7xo0bZW5l6dKl9EKnpqZGTo2fz+eLjY0lhOTk5GRlZcncSm5uLr3Qqa2tlVPjR37ZF6vVescdd8jcSqg8Hg9td1dRUZGQkKDGJrj9J4NeRTnyVFBUVER/Y8qUnp6u3o8+mbgdFHaVE/VdDlRTU0PLlpeXJ2d5WnFHCCkqKpK/lerq6pDWKikpocuXlJTI30qoa4W3L6HicPSF/3qBCKnSfODSpUsXf6HG+zekvLy8V69eo0aNYlc2DoejqKiIVqbV1dXV1NTQ6by8PFrBQggpKChITEycNWsWbvZGl9lsDqlFGWuF3GiLOKlQn9aU85xpILawzKGA5DwzCyACNXKsa9eu7P1//vlnNTYRKD8/n23UarWWlJQ0Wr9fXV0trUC3Wq3ybzwoi8NBobR8lVNXV5eXl0eLJ+dAhHFXhmIHvaamptGFw7grQ9E7QDKPJt1KGPsSElzlQNSJ0Eja5/PNmjUrMzOTzubn5x85ciQlJaXROnSLxZKVlVVdXU2H8HK73fHx8aWlpaqXGBrA+ihjwwQ0RP5zpoFYw7Pdu3cHXzLUFnFSbJVGu1RgWwljXwD0RYTImT9/Pn1sgl6mZGRkyLxhS1ksFqfTyX5fDx48OMKBvCBs8vv/l/+caSD5A2DLf840kPzuSlGrBgaixqUTz4o1Vp9mt9vl1JMEwW758q9h43BQKI1XrNVJ6taCH82wa9Uoma2rw65Vo2S2ro5wX+RDxRpEnb6vcsrLy2l9mtVq/fDDD+W0eQ0iJSWFpg5td4vWBFEhp/9/VqtGe+oMA6tbCzIAdiS1apScoYAiqSEE0B19Rw4d054Q4nK5IswbKiUlhf7+dblcMtsagbLk1K2xWjXWU2eo5NStsfqu3r17h7cVOXVrkdQQAuiOjiOntLSU/jzMz89X8HHOrKws+pU3Z84cXOhExb333kuC9v9P++xpaEBomeglSJCe0GjvbTL7iKuXyWRqtLvSkHqiA9A7HUfOfffdRwixWq1h13s0ZNmyZYQQt9v90ksvKfvOIEfw/v/lDAgtB/u3qbduzePxKNKKjHVXWllZWe9WUKsGhqLXyGH17K+++mpI7dPkSElJCbuX+4b4fD5cM8kUvP9/OQNCy8FqvT799NPAvypV38VWX7NmjXpbAdALvUYOqxwfNmyYGu9Pe+oMbwTJei1ZsiQ2NvaRRx5BC2w5gvT/T+/xRFirRhobAFup+q7gA2CjVg0MR41mcBwaSavdrjTU/r7kv6HJZGrduvWzzz4rbYfN4aBQ2m8kTbE+x/z6KFP2uLBm8S6XS/p6qP2wBVdUVETfza/lvbJbkQONpCHqdHmV4/V6I2wj2yjW39e2bduUekNaX+/z+c6cOTNv3rz4+Pju3bt//PHHIQ0XZhANtShjtWqjR4+OfCsNtShTtr5LOhSQelsB0IXQIufKlSs+GSJcpVGssmvQoEEhrRiSpKQkZd/Q4XDExcVJX/n+++/vvvtuvxeBqrdujdaqWa1WRfreb6hujdZ32Ww2Req7GqpbQ60aGFBoN947dep0/PjxkFZp3bq1nMWOHTsW0ogDHAwaNKigoKCgoMDpdCryhhaLhdULBafUFgMdOnRIpXdW3NChQ/3G1mRt1WQOCC3H8OHDlyxZQp/WTE5OJpJWZBG2iJMaO3ZscXExvTVIb0FF/jQrgB7pciBqVtml6uhqbdu2pRN+o05xwLooNTJp//80clgvnDIHhJaDVWqtWrWKRg4b7S3CFnFSbABsNsx25E+zAuiRLu/lsOYJSjUnAw1itV60z1byy30dq9VKs0ERrNaL1a29/vrrRIkWcVKsSwX6ECuR1N1pYVBaAG5Ci5zmzZs3k0G6ipzlmzVrFtKVRKdOnUIqdnjoE4I2m02pphqshVKjlNpiECqNQ6wsaf//Pp+PZo+CtWoUe1rT4/Eo9ZxpIPqGtEsFNeruAHQhtIq1ep+gDpSQkPDDDz/Q6RMnTqh3e7yqqkq9r056CaVgI4KDBw82b95cOlJq8+bNmzZt+thjj/39739XaisikbYoO3fuHJ1WsFaNkrYo69atG51WsFaNvSGtW9uyZcvhw4dV2gqAxumyYo3FTL3PjSuloKCAKHq76Pe//z3Nm6ZNmxJCMjMzi4uLT548+cILLyi1CcFIW5SpUatGSVuUKfWcaSBpd6WoVQPjUqPShsOjoPQ7otGRSMLW0KOIYWMPlPTr1++jjz7yGwyGw0HRKfa0JhX20DXBsac1qZycHDW2woYCopR6ylg+PAoKUafLqxzy3/Xvarx/JMNBNmThwoXV1dU7duwYM2YMHsWQye/zV7wLV6p///7SWcXr7ii/x1dRqwYGpNfIYfXvs2bNUvzNvV4vfSIkPT1dqT5Db7vttieffBIVKaFi/f9TCv4CkGK1XkSdujsqISGBPXyGWjUwJr1GjtlsTk9PJ4QUFBTIbNQg38KFC+nEM888o+w7QxhYx/4Oh0PxXsMZ1nhM8RZxUuzN0VYNjEmvkUMk3Ycoe/Z6PB52iaPSr10ICbuiValWjWLVXCrVqvm9OWrVwJh0HDlms5kOGl1cXJybm6vIe/p8PlbBMn/+fEXeEyLEWpSpVKtG0bo19WrVKNpdKWrVwLB02eENM3fu3K1btxYXF2dnZ/fr12/kyJGRvJvP5xsxYgQd+S0vL08XD0saxBNPPNGzZ0/1atWoqVOnnjp1StVNEEKmTZvG+lICMBp9R47JZHI6nTabze12jxo1Kj8/PyMjI7y3onlDnzx3OBy0IyzQiNTU1FatWqm9lYkTJ9IfHKoaN25ctHqw3bdvH53o3LlzVAoAoOOKNcpisWzYsIFOZ2Zmzpo1K4zxnisrK7t06ULzxm63s+YDoBFms5n27Kkqi8XC4e5dcnJytGrVzpw5QyfUvl4EaIjuI4cQkpycXF1dTX85LlmypEuXLvI7//d6vbm5uYmJifTnrcPhWLduHU5IAAA1iBA5hBCLxXLo0CF6k9ntdmdmZvbq1Wvp0qUNPSjq8/lKS0tzc3Pj4uJo+zRCSF5e3uLFi5E3AAAqiakL6KNC10pLS++77z5pjbzNZktKSrJYLAMGDDh16hQda4f2n8akp6fPnz8/iu0F/DrSFuyggEY4nU46FJN6/2D4T4bgRPtFn5KScuTIkcLCwtdff53em3G5XKzDtEAOh+OJJ55A4zQAAA5EixxCiMlkysjIyMjI8Hq9W7Zsefvttwkhe/fupcFD+yz4zW9+M27cuB49eqAaDQCAG5G/cM1m88iRIyN8WAdCxX/cbsGgMgoEJkjzAQAA0D5EDgAAcILIAQAATkS+lwNagDsTjcLdLzAOXOUAAAAniBwAAOAEkQMAAJwgcgAAgBNEDgAAcILIAQAAThA5AADACSIHAAA4QeQAAAAniBzD8Xg8TqezsrLS5/NFuywAYCzo8MZwNm7cSIeGJITYbLbbb799wIABgwYN6ty5M0YPAgBV4SvGcMrKyti035CpSCAAUFUMel3UAs4jxvt8vp9++mnbtm1lZWWbN29uaKDu8BKI874IgNsn5nQ66QWuepvA0YfgEDmaEN0TNYwEslgsZrO53sXwpRMqRA4YByJHEzR1ospMIKvVescdd4wePTo5Oblbt24sgTS1L7qAyAHjQORogpZP1FATiLVNoDS1L9qEyAHjQORogo5OVJkJxLhcLuk1EARC5IBxIHI0Qb8naoS1cEAQOWAkiBxNEOZE9fl8sbGxjS6GBJJC5IBxIHI0QaQT1W9fKioqcA0UHCIHjAORowkinahB9gW1cPVC5IBxIHI0QaQTVf6+IIEoRA4YByJHE0Q6UcPeF8MmECIHjAORowkinahK7YtxEgiRA8aByNEEkU5UlfZF4ARC5IBxIHI0QaQTlc++iJRA3I7+rFmzlixZkp6e7nQ6VdqESP/JoAZEjiaIdKJGZV90nUDcPrGMjIyCggJEDkQRBkQBEZhMpoSEhISEhIyMDNJwArnd7oKCgoKCAjqrzQQCEBgiBwSEBALQJkQOiA8JBKARiBwwHCQQQLQgcsDokEAA3IQZOceOHTt+/Dib7dWrl19LleB++OGH06dP0+nY2NikpKTwigGgOCQQgHrCjJwdO3aMHTuWzX722Wd33HGHzHXr6upSU1N/+OEHOnv33XevXr06vGIAqA0JBKCgMCNn5MiR8fHx1dXVdPbf//63/MjZvHkzyxtCyOTJk8MrAwB/SCCASIT/KOiTTz65aNEiOh0XF+d2u2WeSJMnT/73v/9Np9u3b3/06FE5g3qJTaQH6ETal1CF90RqXFyc9K94FBQEFn7kuFyuXr16sdk33nhj0qRJja5VU1NjtVq9Xi+ddTgcixcvDq8AIhHpRBVpXyIkM4H8IHJAYOG3WLPZbH369Nm1axed/fe//y0nct5//32WNwS1aiA0mbVwfjp27IhaOBBVRI2kJ0+ezCKH3qHp2rVr8FVYlRr5JbQiKQCAjjSUQLR3Zwb3gUBg10SyckZGBrsNU1dX9+abbwZf/ocffti8eTObxSUOGBlNIBo/Ug6Hw2azsVmaQJmZmTabLS4urmPHjhkZGU6ns7y8XFphAKALEUVO+/btR48ezWYbjZw333yT1e2aTCa/H3cAQAhZvHjxnj17amtrKyoq8vPzkUAgkkgHL/joo4+kD+iUlJSkpKQ0tPCvf/3rQ4cO0Wk8jiMl0k1XkfaFDzmfmCKjM6D5AERdpB3e+D2g88YbbzQUOSUlJSxvCGrVAEKhyPNAUSs9wC8UGKJN+oDOdddd53a7W7RoEbjY1KlTX3nlFTqNx3H88PxtWFlZuWbNmj59+tx4440Wi0Xx98fv3FBF/onJvAZq3rz5xYsXcZUDUaRA5Pg9oON0OtPT0/2WuXDhgtVqPXfuHJ3F4zh+eJ6oTqdTehctPT190KBBCiYQvnRCpfgnFiSBbrzxxpkzZ86YMSPCTTQERx+CU2Yg6r59++7cuZNODxs2bP369X4L+H3N7dq1q3fv3pFvVxg8T9Tc3Nzs7OyG/hp5AuFLJ1Rqf2LSBJowYUKQu62Rw9GH4JSJnLy8PIfDQaevueaaH3/8sVOnTtIFhg8fvmHDBjrdq1ev3bt3R75RkfA/USsrK/ft2/fVV19t3bq1uLi4ocXCSCB86YRKpE9MpH0BNSgTOSdPnvzVr351+fJlOvv8888//fTT7K9VVVXXX3/91atX6eyiRYtmz54d+UZFEvUTVcEEivq+6I5In5hI+wJqUCZyCCH33nvvBx98QKd79Oixb98+9qfnn3/+mWeeodOxsbFVVVVq3LXWNa2dqJEkkNb2RftE+sRE2hdQg2KR8/HHH999991stqys7NZbb6XTPXr02L9/P50eO3bshx9+qMgWRaLxEzWkBJo5c6b0Ra3tiwZp/OiHRKR9ATUoFjk+n69z585sqNBp06YtW7aMEFJWVvbb3/6WLbZq1ap77rlHkS2KRF8nqswEokpKSlRqjS0MfR394ETaF1CDYpFDCJkzZ87//u//0uk2bdocO3asWbNm06dPX758OX3RYrFUVVXhcZxAuj5R1WuJYBC6Pvp+RNoXUIOSkVNeXi7tDOrdd98dM2ZMx44dT58+TV+ZNWvWiy++qNTmRCLSieq3Lw1BAjECH31d7wuoQcnIIf/9gM6oUaMmTZo0YcIE9lc8jtMQkU5Uv32pqKjANVBwAh99Xe8LqEHhyJE+oGMymfr16/fFF1/QWTyOE4RIJ2rwfUEtXCDjHH0AhSPH7wEdKTyOE4RIJ2pI+4IEIgY++mBACkcO+e8HdBg8jhOcSCdqJPtizATC0QfjUD5y/B7QofA4TnAinagK7otBEghHH4xD+cjxe0CHwuM4wYl0oqq3L6ImEI4+GIfykQNhEOlE5bYvwiQQjj4YByJHE0Q6UaO1L/pNIBx9MA5EjiaIdKJqZF90lEAa+cQUIdK+gBoQOZog0omqzX3RcgJp8xMLj0j7AmpA5GiCSCeqLvZFUwmki09MJpH2BdSAyNEEkU5UPe5LdBNIj59YQ0TaF1ADIkcTRDpRBdgXzgkkwCfGiLQvoAZEjiaIdKKKtC+U2gkk0icm0r6AGhA5miDSiSrSvtRL8QQS6RMTaV9ADYgcTRDpRBVpX+SIPIFE+sRE2hdQAyJHE0Q6UUXalzCEkUDx8fHSP+n6EzP40YdGIXI0QaQTVaR9iZzMBJLS9SeGow/BIXI0QaQTVaR9URxLoP379xcUFDS0mBb6RAgPjj4Eh8jRBJFOVJH2RW0ej+fgwYODBw8OvpiOEghHH4JD5GiCSCeqSPvCh98nlpeXt23bNp1eA+HoQ3CIHE0Q6UQVaV/4aOgTo9dAu3bt0lEC4ehDcIgcTRDpRBVpX/iQ+YnpIoFw9CE4RI4miHSiirQvfIT3iWkzgXD0IThEjibwPFErKyvffPPNfv369ezZMyEhQfH3x5dOqBT5xGQmUF5e3owZM8J4f5lw9CE4RI4m8DxRnU5nZmYmm7Xb7UOGDFEwgfClEyo1PrGGEignJycrKyvy928Ijj4Eh8jRBJ4n6tKlS2fOnNnQXyNPIHzphIrDJ8YSqE+fPikpKYq/P4OjD8EhcjSB/4kqsx4mjATCl06oRPrERNoXUAMiRxOifqIqmEBR3xfdEekTE2lfQA2IHE3Q2okaSQJpbV+0T6RPTKR9ATUgcjRB4ydqSAmUnZ0tfVFr+6JBGj/6IRFpX0ANiBxN0NeJKjOBqKKiIpVaYwtDX0c/OJH2BdSAyNEEXZ+o6rVEMAhdH30/Iu0LqAGRowkinah++9IQJBAj8NHX9b6AGhA5miDSieq3L9XV1bgGCk7go6/rfQE1IHI0QaQTNfi+oBYukHGOPgAiRxNEOlFD2hckEDHw0QcDQuRogkgnaiT7YswEwtEH40DkaIJIJ6qC+2KQBMLRB+NA5GiCSCeqevsiagLh6INxIHI0QaQTldu+CJNAOPpgHEaJHI/H4/V6f/755/Ly8q5du3bq1IkQop0vIJFO1Gjti34TCEcfjEPkyPH5fGVlZYWFhYWFhW63u95lHA7H8OHDU1NTzWYz5+JJiXSiamRfdJRAGvnEFCHSvoAaxIwcn89XWFg4Z86chpImUE5Ozpw5c6IVPCKdqNrcFy0nkDY/sfCItC+gBgEjZ+3atQ899JA0bBwOx4QJE1hlGqtkW7Vq1fLly6VL5ufnT5gwwWQycS6zSCeqLvZFUwmki09MJpH2BdQgVOT4fL758+ezzvNtNtuyZcsaHXa3vLx8wYIF7HvHbrevW7eOc+qIdKLqcV+im0B6/MTctCo4AAAgAElEQVQaItK+gBrEiRyfzzdixIji4mJCiNVqfe+990Ia472ysnLs2LEul4uu7nK5LBaLWmUNINKJKsC+cE4gAT4xRqR9ATUIEjnSvLHb7R9++GEYd2V8Pt+cOXOWLFlCuKeOSCeqSPtCqZ1AIn1iIu0LqEGQyJk1axaNCofDsXDhwkiqxXJzc2nVHM8aNpFOVJH2pV6KJ5BIn5hI+wJqECFynE5nZmYmUS4kWOo4HI7FixcrUMTGiHSiirQvckSeQCJ9YiLtC6hB95Hj9Xq7d+/udrutVuuhQ4cUaeUsraarqKjg0FhWpBNVpH0JQxgJlJiYKP2Trj8xgx99aJTuI4ddkZSUlITUXiA4r9cbFxdHCLHb7Rs3blTqbRsi0okq0r5ETmYCSen6E8PRh+D0HTksGNLT051Op7JvrlKY1UukE1WkfVGcpp4HUgOOPgSn78hZu3btqFGjiDrVXz6fr0uXLm63m8MdHZFOVJH2RW00gQYPHhx8MR0lEI4+BKfvyElLSysuLrbZbHv27FHj/VlDOLU/JZFOVJH2hQ+/TywvL0+/10A4+hCcjiOH1arl5eXNmDFDjU2UlpbSX6Aulys5OVmNTVAinagi7QsfDX1ieqyFw9GH4JSJnEuXLtXW1jaypZgYZTvNrKyspE191MsDn88XGxtLCMnPz8/IyFBjE5RIJ6pI+8KHzE9MFwmEow/BKRM5999//8qVK4Mv06xZs4sXL0a+LYY9jlNTU6NeD9AdO3Z0u905OTlZWVkqbYKIdaKKtC98hPeJaTOBcPQhuGuiXQAFqDriwB133EEI2b9/f4ya/Daq6rZiYmJmzZrldDorKyt9Pp96Hx2oymKxpKSkzJgxw+l01tXVVVdXl5SU5OXlpaenSxcrLi7Ozs4eNWpUYmJiTExMbm5utAoMQAjh3Uu/gg4dOhTtIugVbRNB2Wy222+/fcCAAYMGDercuTP/gRtAERaLRRpCYTwPBMCBMt8vN9xwQ9++fYMv06xZM0W2xXTv3l3ZNzQOq9XKRglyuVy0/2wKCSSGehPohx9+6Nq1a7SLBoamzBfKvHnz5s2bp8hbaY3H46ETqtZKx3CvAfd6vYcPHy4vL1+zZs2mTZuQQGJjCRTtgoDR6biRNGvBXF1drd4oAzQMhG+x1lAC+ZGTQFHfF90R6RMTaV9ADTqOHNZIWr0OaTweT3x8PCGkqKho5MiRamyC0tqJGkkCaW1ftE+kT0ykfQE16DhyyC8tmNXrkIa1w1b1Qopo/kQNKYGkbROI9vZFgzR+9EMi0r6AGvQdOaznzdraWjVuM6jdoQ6jrxNVZgJR+fn5uA8UnL6OfnAi7QuoQd+Rw27nqHGvhVXcqdehDqPrE1XB+0DGpOuj70ekfQE16DtyCCG9evVyuVxWq/XIkSPKfovRSxyicu8GlEgnauCTrfVCAjECH31d7wuoQfeRwy50lL2jw4ZF4HCJQ8Q6Uf32paamBtdAwQl89HW9L6AG3UcOkVyOKNV0jTVUU+PiqV4inajB9wW1cIGMc/QBRIgcj8djs9nol1fkY7WxkdkIl/FAKW4n6meffTZhwgQ2O2/evEcffVTZTYS0L0ggItbXtEj7AmoQ4dS1WCwbNmyw2WyEkIEDB7733nth54Q0vfLy8sR7Wvvy5csnT55ksxcuXIhiYQghZrM5OTk5OTmZtv5AnwgAgqsTRVFREdupvLy8MN6hpKTEarXSd8jJyVG8hEFwOyjr1q2TbmjRokWKb0LBfampqXG5XPn5+enp6ezQBLLZbA6HIz8/v6Kiora2Vqkd4UakU1KkfQE1CPU/UVJSIv0aKikpkbliRUWFtMv38BIrEogcOURNIJG+pkXaF1CDCPdypKQ1Y4QQu93+xBNPpKam1tvK2ev17t69+1//+pe0d3du92+kuNWAf/LJJyNGjGCzixYtmj17trKb4LYvwtwHEun+h0j7Eh6v10v7At62bRshJDk5uWXLlmazWdXuS3REtMghhPh8vsLCwjlz5ki/g2w2W1JSksViGTBgwKFDh/bv3+/xeGg7NyYnJ2fOnDlqP4JTL0RO5PSbQCJ9TYu0LyHxeDwrV65csWKF9KajlNVqnTZt2rhx45KTkzmXTVuidXmltpqampycHNqmIDir1ZqTk1NdXR3F0nI7KLquWAuJjmrhNPKJKUKkfZHJr1pezheO/Dp/8Qh4lePH4/Fs3LhxzZo1hJC9e/fSrgro8NKDBg1KTU3Vwo8OXOWoTcvXQNr8xMIj0r40yuPxzJo1S1otb7PZpk6dOnr0aEII/f+prKwkhOzbt+/tt9/2W/Ltt9/m9uVz6dIldiyaN2/OZ6P1i2bewS+4HRTjXOUEp6lrIF18YjKJtC/BVVRUSP9zcnJyampqgq9SW1tbVFQkXSs/P59PaaWjwf788898Nlqv6FdkA/AX+DyQx+PZtm1bWVnZ5s2bWXU8ngeCerF+tgghDodj/vz5cu4Bm0ymkSNHHjlypLCwkI6KkpmZeejQoaysLHWLqyU4ZwCI2Ww2m80JCQk0gXw+308//YQEgnpJ8yaMwRtNJlNGRsagQYMGDhzodrvp8CvGSR2cJAD+TCZTQkICEggCeTye++67j067XK6wb8YkJCQcOnTonnvuKS4uzs7O7tevn6rjDmsHzgqARiCBgPL5fOyxv5KSkghv/pvNZqfTSd9w1KhRkfcPqQs4DQBCgwQyrMLCQmU7YLRYLNu3b6dDQY4dO1bt0Ye1AP/3ABGJMIG00EYf5PB6vfSev81mU3AMrYSEhLy8vJkzZ7pcrtLSUvG6EvaDyAFQUngJJOX1eqPSBQYEt3DhQjqxevVqZd/5sccemzdvntvtnj59uvAXOogcABXJTCCpuLg4+rTy6NGjk5OTu3XrhgTSguXLlxNC0tPTFb/jYjKZFi5cmJmZ6XK5Kisrxb6jg8gB4KfeBKJV+VJut7ugoIA9rI4Eirry8nJ6F+fxxx9X4/3Hjh1LJ9asWaNgrZ0GXRPtAgAYF00gvxfz8/MdDoe0e0CaQJmZmTabLS4urmPHjhkZGU6ns7y83Ov1ci2xUa1atYpO9O7dW433N5vNdrudELJixQo13l87cJUDoC0ZGRnBa+FwDcTf/v37CSF2u129j3fKlCnFxcUN3eETBiIHQKNk3gdCAnGwadMmQkjPnj3V2wRruxjS7ZwrV67Uhdh36pUrV3w+X6OLqdSOH5EDoA9IoCiiN3IGDBig3iZatmwZxlqdOnU6fvx4SKu0bt1azmLHjh0L0uNt2BA5ALoUXgKlp6c7nc6oFVpRfgMlqKempobPhqiqqiqBG60hcgBEIDOBfvOb30S1mLrE+dKwU6dOPDfHGSIHQEANJdCgQYOiXTQdO3XqVLSL4K958+bNmjVrdLFLly6xaTnLE9UuIhE5AOJjCRTtgigv1Jvn4bHb7cXFxdu2bVPvoZl9+/bRCYvFIn8tOupooxISEn744Qc6feLEibi4uBBLpxg8lwMA0AgaA7Tdmkq++uorOiF2Ew9EDgBAIx544AFCiNvtlnlVEQbaoY7D4VDp/TUCkQMA0IjU1FQ6sWbNGjXen3WoM2HCBDXeXzsQOQAAjWAd0sybN0/Oc5ShWrBgAZ1QqUMd7UDkAAA07rnnniOEuN3ul156Sdl3rqyspA9O5eTkiH0jhxASw6e9BwTn1x5RvYPyySefjBgxgs2aTKYmTZqE9A7PP//87NmzgyzAbV+EIdInxnNf6LZ4flxpaWnFxcWEkOrq6pDalQXh8/n69u1LH5yqqalRKXKkLdZ+/vnnKLZYQyNpQ/P5fKHWEqhRqwCgCytWrKAjTdjt9q+//lqRXsjmz59P8yYvL0/4SxyCijUAAJkSEhJycnIIIS6X68EHH4z8DZ1OZ3Z2NiHEbrc/9thjkb+h9iFyAADkysrKou0ICgoK0tLSIrnoX7p0aWZmJiHEarV++OGHKvXcrDW4l6MJqM03MpE+MbHv5VA+n2/EiBH0po7NZisuLg71vo7P53vwwQdpkwGr1bp9+3a1O4bQzr0cXOUAAITAZDKtW7cuPT2dEOJyueLj43Nzc2UOz+rz+ZxOZ5cuXVjeuFwuITsiaggiBwAgNCaTyel00vs6hJDs7Oy4uLjc3Nzy8vKGqto8Hs/SpUv79u2bmZlJn/q02+1HjhxRquWbXqBiTRNQtWJkIn1iRqhYk6qsrJw7dy4bjoiiF0CDBg1q27Yt7a1g06ZNNGYom822bNmylJQUzqXVAkSOJuBLx8hE+sSMFjlUeXn5K6+8smTJkkaXtNvtU6ZMmTBhgkEaCwRC5GgCvnSMTKRPzJiRQ/l8vrKysk8//XT//v2EEHrpY7PZkpKSLBbL8OHDU1NTjfDkTXCIHE3Al46RifSJGTlyQA40HwAAAE4QOQAAwAkiBwAAOEHkAAAAJ4gcAADgBJEDAACcIHIAAIATRA4AAHCCyAEAAE4QOQAAwAkiBwAAOEHkAAAAJ4gcAADgxKBjNmicX3e8uibSvvCBTwwEhqscAADgBJEDAACcIHIAAIATRA4AAHCC5gOawGcwXZEGPIZQ4eiDFuAqBwAAOEHkAAAAJ4gcAADgBJEDAACcIHIAAIATRA4AAHCCyAEAAE4QOQAAwAkiBwAAOEHkAAAAJ4gcAADgBJEDInj44YfbS7z55pshrX716tXhw4ez1S0Wy4YNG1QqKoCRxaB3P+MQuGNHt9udlJR06tQpOtu6detvvvmmU6dOMldftGjRk08+yWbvv//+goIC5UsZVeIdfbpHAuyIoSByDES8Lx0pp9OZmZnJZkeMGLF27Vo5Kx48eLB3794XLlygsx06dNi7d2+7du1UKWX0iHf0ETl6hIo1EERGRsY999zDZtetW/faa681utbVq1cnT57M8oYQ8tJLL4mXN4Fi9C/aHyGEA1c5BhIj3O9cP8ePH09KSjp58iSdbdWq1TfffNO5c+cgq/zjH//405/+xGYzMzPffvttdUsZJaJ+R4v3byw2RI6BCB85hJCCgoKMjAw2O2zYsPXr1ze08P79+/v06XPx4kU627Fjx71797Zp00b1UkaDEY4+aB8q1kAo6enp48aNY7MbNmxYsWJFvUteuXJl8uTJLG8IIS+//LKoeQOgEbjKMRCD/M71q15r2bLlN998c/311/st9vzzzz/zzDNsdtKkSW+88Qa3QvJnkKMPTG1t7bZt29avX3/48OHq6uozZ860bt06Pj6+d+/eI0eOtNlsUSkVIsdAjPOl884776Snp7NZu92+ceNG6QJ79+7t27fvpUuX6GynTp2++eab1q1bcy0lX8Y5+lBTU/PPf/7zxRdfPHv2bEPL2Gy2v//978OHD+dZMEIIqQPDMNShHz9+vHRnly9fzv5UW1vbr18/6V/Xrl0bxaLyYaijb2QbNmyIj4+X+f0/ZcqU2tpansXDVY6BGOp3bnV1dVJS0okTJ+hsXFxceXl5QkICIeR//ud//vrXv7Il//CHP7z66qtRKSRPhjr6hvXGG2888sgjtbW10hdNJlOHDh1atWp1+vTp48ePX716VfrXu+666+OPPzaZTJyKyDPfILqMdujfeecd6f7ecccdV69e3bNnT9OmTdmLXbp0OXv2bLRLyoPRjr4BrVu3zu+HxejRo9etW1dTU8OWqa6uXrZsWceOHaWL/fnPf+ZWSPznGYgBv3Tuvfde6S4vWrSoT58+0lfWr18f7TJyYsCjbyhHjx61WCzs+LZq1Wr16tUNLXzq1KkhQ4awhWNiYrZv386nnKhYMxADVq34Va/5mTp16ssvv8y5SNFiwKNvKA899BDrbqNp06bFxcXSUAl07ty5W2655fvvv6ezY8eO/fDDD1UvJVqsGYoxv3QKCwsnTpwY+HrXrl3Ly8tbtmzJv0hRYcyjbxDHjh1LSEi4fPkynf3LX/7yt7/9rdG1ioqKRo8eTaevueaa77//nt7sVBUeBQXBTZgw4b777vN7MSYm5tVXXzVO3oDYXn31VZY31157rbQPpyBGjhzZrVs3On316tXi4mK1yieByAHxTZ061e+Vhx9+eOjQoVEpDIDiPvvsMzY9YsQImb+lYmJipGdBSUmJ8iULgMgBwV2+fFk6Fg5VXl7u11QUQKdqa2u/+OILNjtw4ED56954441s+ttvv1WyWA3g1RYbIEqys7P37t3r9+IXX3yxaNGiOXPmRKVIAAr6/vvvpaNvfPvtt0uXLmWz7Kad9O4dm/7666/Zi2yEQ1Wh+YCBGPAG8o4dOwYOHHjlypXAP7Vo0WLPnj2//vWv+ZcqKgx49A2itLR08ODBkb9P27ZtWc+E6kHFGgjr0qVLkydPZnnTpEkTaT+eFy5c+MMf/oBvXtA7pa5OWJeDqkLFGggrOzt73759bPapp56aP3/+oUOH3n33XfpKSUlJXl6ew+GIUgEBFODz+aSzLVu2vOaacK4l4uLiFCpRMKhYMxBDVa2UlZWlpKSwS5yePXvu3LmzWbNmHo+nZ8+e7OFQs9nscrlYU1GBGeroG8rnn3+emprKZsvKym699dYolic4VKyBgC5evOhXpfb66683a9aMEGKxWKQ3V71e78MPP4zvX9Cv9u3bS2crKiqiVRI5EDkgoKysrP3797PZp556Svq7b+LEidKRQzdt2vTSSy9xLR+AchISEqQ91e7YsSOKhWkUKtYMxCBVK1988UVKSgp77IZVqUmXOX78eM+ePdl917i4uG+++aZr1668y8qRQY6+MaWmpn7++ed0+qabbpL+3tIaXOWAUGiVGssbaZWaVIcOHZYsWcJma2pqAnsoANCLYcOGsekDBw6sX78+ioUJDpEDQvnLX/5y4MABNutXpSaVmZk5ZswYNrtx48ZXXnlF9fIBqODhhx9u0aIFm3366acvXrwYxfIEgYo1AxG+amXbtm1DhgwJXqUmdfTo0aSkpDNnztDZ6667bu/evZ07d+ZRVu6EP/oG98QTT7z44otsNj09/a233mrSpInM1cvLy5OTk9Up2n/BVQ4I4sKFC1OmTGm0Sk3qV7/6lfQsPXfu3KOPPqpuKQHUkZ2d3b17dzZbUFBw5513Ntp67fLlyx999NHQoUNvu+02lQv4H7jKMRCxf+c++eSTixYtYrN//vOfFyxYIGfFkSNHrlu3js2+8cYbkyZNUr580Sb20QdCyN69e3/729/W1NSwV5o0aXLfffeNGjXqt7/9bYcOHVq2bHn+/PmzZ88ePnx49+7d27dvLyoqOnv2LCGkVatW7HJfVYgcAxH4S6e0tPS2226TX6Um9dNPP9188830xCOEtGnTZu/evX6DwwtA4KMPzJdffjl+/PiqqqpQV+QWOahYA90Lo0pNqnPnzgsXLmSzp0+ffuyxx5QvJYD6br311q+++uquu+4KdcUePXqoUZ5AiBzQvblz53733XdsNkgrtYY89NBD0mamH330kdPpVKx8ABxZrdZ169Zt3759zJgxzZs3D75wcnLyH//4x507d27fvp1P8VCxZiBCVq2UlJSkpqaGV6Um9eOPP958880///wznW3Xrt2+ffvi4+OVLGtU+R19YYjxb6ySixcvlpaW7tixo7q6+sSJE+fPn4+Li2vVqlViYuJvfvObPn36dOjQgXOREDkGImTkgEyIHNACDF4AYEQCfFOLGqJiw70cAADgBJEDAACcIHIAAIATRA4AAHCCyAEAAE4QOQAAwAkiBwAAOEHkAAAAJ4gcAADgBJEDAACcIHIAAIATRA4AAHCCyAEAAE4QOQAAwIm6gxeI1Lu4AJ29+xHp6ACALuAqBwAAOEHkAAAAJ4gcAADgBANRG4h4t6MAQF/UjRy1v+OkN8DxfQoAoHGoWAMAAE4QOQAAwAkiBwAAOEHkAAAAJ4gcAADgBJEDAACcIHIAAIATRA4AAHCCyAEAAE4QOQAAwAkiBwAAOEG3ngAASqqsrCSEVFVVnT17tmfPnoSQzp07m0z4siUEkQMAEDmPx7Njx45FixYVFxfXu4DNZps6dWpqampycjLnsmlKjK47YEZP0gCGRU//qJ/4lZWVc+fOLSgokLm8zWZbtmxZSkqKqqXSLEQOAOhS1CPH6/XOnTt3yZIl7BV2KdOyZUuz2Xzttdd6PB5CyLZt215//XXpBZDdbl+xYkVCQgL/YkcXIgcAdCm6kePxeGw2m9vtprM5OTnTpk2zWCxBVvF6vatXr54zZw5bq6SkxGiXO2ixBgAQmtLS0vj4eJoc6enp1dXVWVlZwfOGEGI2mzMyMo4cOZKXl0dfGTx4cG5ururF1RJc5QCALkXrKqe0tHTw4MF0Oj8/PyMjI4w3KS8vHzZsGA2tnJycrKwsJYuoYYgcANClqESOtD4twmoxj8djt9tdLlfkb6UjiBwA0CX+kePz+fr27atgSEgDrKKiwgitCXAvBwBAlsLCQpo3OTk5ilyUWCyWDRs20OmpU6dG/obah6scANAlzlc5Xq+3e/fubrfbZrPt2bNHwXfOzc3Nzs4mxqhew1UOAEDjFi5cSGvA3n77bWXfee7cuVarlRAyffp0Zd9ZgxA5YESlpaX0GT0AmZYvX04ISU9PV7zHGpPJtHDhQkKIy+US/t8SkQOGQxu52my2aBcEdKO8vJxe4jzwwANqvP/YsWPpxMqVK9V4f+1A5IDhFBYWEkLcbnd5eXm0ywL6sGXLFjqRmpqqxvubzWa73U4IWbFihRrvrx3oSRqMxev1sk6xVq1aZfBufUGmbdu2EULsdrvZbFZpE2PHji0uLqYt4iJ36dKl2tra4MvExMSotzsNwVUOGAv7uUoIyc7O9vl8USwM6MWmTZsIIXTwG5X06dOHTtDhdiI0adKklo1p165d5BsKFSIHjGXRokXS2bKysmiVBHSE3sgZMGCAepvo1KmTem+uHYgcMBCPx+M3gtZzzz0XpbKAMmLU5/V6ee5RVVUVz81xhns5YCCBzYGKi4u9Xi//Gm3QEc7/Hopc7txwww19+/YNvkyzZs0i31CoEDlgIPPmzQt8cfXq1eF1BgzRhQ5Hgpg3b169/+1Rh4o1MAr2aIWfF154gX9hQF9oC+Y1a9aot4l9+/bRiUbH3dE1RA4YxapVq+p93QiPfEOEaAzQdmsq+eqrr+iE2NW8iBwwBJ/PR3tOrBftywSgIbTTAbfbrd6vE/pP6HA4VHp/jUDkgCEEbwyNyIHgWKcDKnVIw2p9hw8frsb7awciBwwheGNot9tdWlrKqyygP6xDmnnz5qnx+PCCBQvohEod6mgHIgfE5/V6/R7HCUQ7XgNoCP3V4na7Ff9XqaysLCgoIIQ4HA6xb+QQDNFWr+PHj3/88cds9ve//31UGrCDUpxOZ2ZmZqOL1dbWmkx4bAAa1KtXL9oHWnV1tYLtytLS0uhPopqaGuEjBydYPb777jvpoLD33HMPIkfXZDaD3rBhw8iRI9UuTL0uXLiwe/fu48ePnz17lvXGaLFYWJ/2oAWrV69OTEwkhGRkZKxbt06RHyi5ubk0b3JycoTPG0IIqdMzlXZk69at0nf2eDwKvjlwVlFRIfNcsNvt/Iu3cePG4cOH1/vl1bdvX/7lgeBycnLo0UlPT4/83YqKitj/Xm1tbeRvqH24lwOCe/PNN2UuWVxczPkBnT/+8Y9paWnr169Hh9Z6kZWVRdsRFBQUZGRkRHLgli5dOmrUKEKI1Wp1Op0GqdRF5IDgQmoAzXNMxmXLltHhh0Ff1q1bx1Knb9++YfxM8fl8s2bNmjlzJp3dvn272D0OSKH5QD1KSkqGDBnCZj0eT/v27ZV6c+CJjjktf/nk5GSlxsgK7uLFi126dDlx4gSdbdWq1ezZs4cMGdK+ffsmTZrQF1u0aHHDDTdwKAyEyufzjRgxgjWDzMnJmTNnjsw7MU6nc86cOfQpHKvV6nK5jJM3hOBeTn1wL0cYYTzL7XK5OBTs/fffZ1uMiYnZsWMHh42Csth9HUKI1WrNyckJ8s9TXV2dl5dns9nYKsa5fyOFq5x64CpHDF6vNy4uLtS1cnJysrKy1CiP1FNPPfXPf/6TTg8cOJCOcwy6U1lZOXfuXPpUDZOenk4IGT16NCGkrKzM4/Hs3btXevVstVrfe++9lJQUzqXVhGhnXkRU2hFc5YiBNQcKSYcOHTj89hw/fjzb4tSpU9XeHKiqpKSExkyjbDZbfn6+AS9uGEO0kQBj8htzWqbjx4+XlZWp/Qv07NmzbLply5aqbgvUlpKSkpKS8uabb5aVlRUWFno8Hjb+rM1mS0pKIoQ88MADqamphnjyJijDRc7Zs2c/+OCDzZs3V1VVnTx5Mi4uLjExceDAgePHj+/QoUO0SweKCRxzWr5//etfakfOxYsX2bS0fhj0y2Qy0eyJdkE0zUCRc+nSpb/97W///Oc/L126JH29pKTkrbfemj179qOPPjpv3jz85BRDJM2dCwoKVqxYofgP0n379l2+fJlOe71e9rrH49m9e7ffwm3atOnatauyBQCIOqM0Hzh27FhaWtrevXuDv2FSUtInn3xSWVmJ5gN6Z7PZysvLw169qKhI8c5vOnfuXFVVJXPhiRMnvvPOO8oWACDqDPEoqMfjGTp0qF/exMbGduvWrV+/ftdff/011/znc9i7d+/IkSOlv0BBj8rLywPzxm635+Xl+bUpyM/PdzgcVqvVb+FnnnlG3SICGFO02y9EROaO3HXXXdIl27Zt+69//evUqVNsgZ9++um5555jfXf27dtXujxarOmO9IGJ5ORkvzZC9f7bVFRUSNcihFRXVytbqk6dOsk/MSdOnKjs1gG0QPyKNb+O62+66aZNmzZ17NgxcEmXy3XnnXeePHnS73VUrOkO/cdo6OmHIP82Pp9vzpw5S5YsIYTk5+dnZGQoWKrKykrWJdf999//9ddf0+mHHnroz3/+s9/CLVu2RHsWEI/gkVNXV9e9e/fDhw/T2ZxynxoAABGDSURBVFatWu3ZsyfIXdnS0tLbbrvt6tWr0hcRObpTWlq6a9euxx57rN6uEhv9t6msrFyzZk1Dqyti8ODBbBzSOXPmsMdCAcQm+L2cTz/9lOUNIeSvf/1r8FZAKSkpf/jDH9QvF6grJSVlxowZYQdGQkJCJKsDQEMEj5z8/Hw2bTabp02b1ugqTz31lJolAgAwLsEjR9p11ZgxY6699tpGV7nxxhtvueUWNQsFAGBQIkfOmTNnvvvuOzY7cOBAmSvKXxIAAOQTOXIOHz4svTks7TY8OPlLAgCAfCJHzpkzZ6Sz8sdBMtaISQAAvIgcOdLOegkh1113ncwVW7VqpUJxAACMTuTIYd3YUH5P2wRx5coVFYoDAGB0IkdO69atpbPnzp2TuaL8JQEAQD6RI6dNmzbS2WPHjslcUf6SAAAgn8iR07179yZNmrDZPXv2yFxR/pIAACCfyJFz7bXX0iFgqc8//1zmivKXBAAA+USOHEKIdKS19evXB/YSHeirr746ePCgmoUCADAowSNn0qRJbLq2tvaFF15odJXc3Fw1SwQAYFyCR07//v179+7NZhcvXrxjx44gy69cufLjjz9Wv1wAAEYkeOQQQqQjkVy+fHnUqFENpc6HH34ovSoCAABliR85Q4cOnTx5Mpv1eDyDBg16/PHHy8rKLl68SAipqakpLi6eOHHiuHHjLl26RAjxG7gaAAAUYYhBqJYtW1ZRUbFlyxY66/P5li1btmzZMkJIixYtLly4IF146NChTz/99CeffBKFggIACE38qxxCSIsWLdasWTN8+PDAP/nlTVpa2qpVqzAcJACAGgwROYSQuLi4Tz755LXXXuvcuXO9C1it1sWLF3/yySctW7bkXDYAAIMw1s/5KVOmTJ48eevWrZs3b66qqjp16pTZbE5MTBw4cODtt9/etGlTutjgwYOlA+0AAIAiYnT93RoTE8Omdb0jwBP+bQCixSgVawAAEHWIHAAA4ASRAwAAnCByAACAE0QOAABwgsgBAABOEDkAAMAJIgcAADhB5AAAACeIHAAA4ASRAwAAnCByAACAE0QOAABwgsgBAABOEDkAAMAJIgcAADhB5AAAACeIHAAA4ASRAwAAnCByAACAE1O0CwBc3X333dEugrYY9gP56KOPol0EMCJc5QAAACe4ygHDGTNmTLSLAGBQuMoBAABOdHCVU1lZmZCQEPbqHo+nTZs2JpMO9pS/Rx55JNpFAE5efvnlaBcBQPNXOU6nMzExMS0trbKyMtR1vV7vrFmz4uPjR4wYoULRAAAgNFqPnNatWxNCiouLExMTc3NzZQaP1+tdunTpDTfcsGTJEkJIz549VS0kAADIofXIGTZsGJvOzs5OTEzs1auX0+ksLy/3+Xx+C1dWVjqdzrS0tLi4uJkzZx4/fpy+PmHCBH4lBgCABmj9DofJZHI4HPRihXK5XJmZmYFLxsTE1PsOHTp0SElJUat8AAAgm9avcgghDz/8cCSrT58+XamSAABAJHQQOcnJyVarNezVH3zwQQULAwAAYdNB5BBCpk2bFt6KNpstkgbWAACgIMEjZ+rUqcqWBAAAwqaPyLFYLDabLYwVp0yZonhhAAAgPPqIHELI008/HeoqdrvdbDarURgAAAiDbiJn7Nixoa7y3HPPqVAQAAAIk24ix2w2p6enh7TKgAEDVCoMAACEQTeRQwh5/PHH5S/scDjQlScAgKboKXJCumqJ8AFSAABQnJ4ix2Qy5eTkyFnSarUmJyerXR4AAAiJniKHEDJu3Dg5iz377LNqlwQAAEKls8hJTk6Wc/kyceJEDoUBAICQ6CxyiIyBLG02m8Vi4VMYAACQT3+R0+gVzIIFC/iUBAAAQqK/yLFYLHa7PcgCqamp3AoDAADy6S9yCCFPPPFEQ39yOBzo5AYAQJt0GTnS0an9YMxpAADN0mXk0NGpA1/v0KEDOrkBANAsXUYOaeBqZvr06ejkBgBAs/QaOSkpKYGjU2PMaQAALdNr5JCAoUKTk5Mx5jQAgJaJEzmNPiIKAADRpePI8RudGmNOAwBonI4jh0hGp8aY0wAA2qfvyGGjU2PMaQAA7dN35JjN5ry8vKFDh+JxHAAA7dN35BBCZsyYUVxcjMdxAAC0T/eRAwAAeoHIAQAAThA5AADACSIHAAA4QeQAAAAniBwAAOAEkQMAAJwgcgAAgBNEDgAAcILIAQAAThA5AADACSIHAAA4QeQAAAAniBwAAOAEkQMAAJwgcgAAgBNEDgAAcILIAQAAThA5AADACSIHAAA4QeQAAAAniBwAAOAEkQMAAJwgcgAAgBNEDgAAcILIAQAAThA5AADACSIHAAA4QeQAAAAniBwAAODEFO0CQDS9/PLL0S4CABgIrnIAAIATRA4Yjs/ni3YRAAwKFWtgOOvWrWPTY8aMiWJJAIwmpq6uLtplAOAqJiaGTeP/H4AnVKwBAAAniBwAAOAEkQMAAJwgcgAAgBNEDgAAcILIAQAAThA5AADACSIHAAA4QeQAAAAniBwAAOAEkQMAAJwgcgAAgBNEDgAAcILIAQAAThA5AADACSIHAAA4QeQAAAAniBwAAOAEkQMAAJwgcgAAgBNEDgAAcILIAQAAThA5AADACSIHAAA4QeQAAAAniBwAAOAEkQMAAJwgcgAAgBNEDgAAcILIAQAAThA5AADAiSnaBQAwoh9//PHUqVN0ulWrVomJiexPJSUlRUVFLperurq6rq4uPj6+b9++999/f1JSUr1vVVdXV1JSsnbt2j179pw4cSImJqZDhw79+/e/9957e/bsGUbZPB7PBx98UFJScvTo0VOnTsXFxSUmJg4cOHDcuHFWq5Uu4/V6v/vuO7ZKcnJykyZNwtgWGE4dgMFo4f8/MzOTlWHs2LH0xW3btvXu3buhU/X+++8/deqU3/ts2rSpV69eDa0yefLkwFWCOHv27PTp0xsKj6ZNm06fPv3s2bN1dXVbt26V/snj8Sj1yYDYULEGoAmvvPLKkCFDdu/e3dAC77zzzsCBAz0eD3vlH//4x9ChQ/fs2dPQKm+88Ybdbj9z5oycAnz77bc9e/ZctmzZlStX6l3g8uXLy5YtGzBgwJEjR+S8IUAgRA5A9L333nuPPPKI9Lv+uuuua9Gihd9iBw4cmDBhQl1dHSHkxRdf/NOf/nT16tXgq+zcuXPKlCmNFuDAgQN33nlnVVWV9MWmTZvecMMN/fv379q1K7v02b9//4gRI2pqakLZP4BfRPsyC4A3Lfz/SyvW+vbt26pVKzo9atSoNWvWeL1eulhFRUVWVlbz5s2lZXY6nSUlJSwDxo4du3btWrbK4cOHn3322aZNm0pXWbduXZDC1NbW+tXOderU6Y033jh37hxbprq6etGiRaycffv2lS6PijWQCZEDhqO1yKFiY2PfeuutehfeuHGj9P7KLbfcQtsFNGvW7N133613laKiomuu+f86jFGjRgUpzPz586UlGTRoEL1hE+jIkSPdu3cnARA5IBMiBwxHm5HzyiuvBFl+2rRpgV/0BQUFQVaR1qeZTKaTJ0/Wu9iFCxfatm3Llrz++uvPnDkT5G0PHz5sNpsRORAe3MsBiL4777zzoYceCrLAI4884vfKmDFj7r//fpmr+Hy+nTt31rvYu+++y5prE0IWLlzIas/qlZiYOHfu3CALAASByAGIvieffDL4Ar17927Tpo30lSeeeCL4KgMGDLj22mvZbENt4d5//302/atf/Wr8+PGNlJWQRx99NDY2ttHFAAIhckBApaWls2bNkrYnDnX1jIyMsFcPVdOmTYcOHdroYjfddBObNpvNQ4YMCb58TEzMjTfeyGaPHz9e72JlZWVsevz48dI7QA1p167dnXfe2ehiAIEQOSCg6dOnL1myJD4+funSpT6fT/6KlZWVGRkZgwcPLigoWLlypXollOrZs6dfm7R6tW7dmk0nJyebTI13HSJd5dy5c4EL/PTTT263m836tUMLQv6SAFKIHBDQ1KlT6cTMmTNjY2Nzc3PLy8uDLO/z+UpLS9PS0hITEwsKCuiLo0ePVr2ghBBC2rdvL2cx6U37MFY5f/584AJHjx6VzsrvIKdHjx4ylwSQQuSAgPwefszOzrbZbDExMRkZGU6nU/qn3NzctLS02NjYwYMHFxcXs9dtNltCQgKf0gY2AFNjlbr/bqpHnT59WjorvSoKTv6SAFLo1hMEZDab7Xa7NEKogoICdhFDZWdn1/sOTz/9tFqF05Kff/5ZOis/yVq2bKlCcUB8uMoBMTXaoCu4sWPHKlUSLZM2aSOEXLhwQeaK9VbTATQKkQNiGjZsWNjr2u32MGqu9Miv4XW9TQzqJX9JAClEDojJZDI5HI7w1n3uuecULYt2xcfHS2elQ+AEd/DgQRWKA+JD5ICwHn744fBWHDBggLIl0axu3bpJ+xpoqIeCQEEGWQAIApEDwkpOTmajWMqXk5Mj55EXMcTExPTv35/Nrl69Ws5a58+f37Bhg2qFApEhckBk9faGGdy4cePUKIlmjRkzhk0fOHDg888/b3SVgoICjJcD4UHkgMhCjRyr1ZqcnKxSYbTp97//vbTvg9mzZwfvr+Hs2bN/+ctf1C8XiAmRAyKzWCw2m03+8s8++6x6hdGmNm3aSG967dq1a/LkydLBRqUuXLhw9913S/vIAQgJIgcEt2DBAvkLT5w4Ub2SaNa8efM6d+7MZvPz84cMGfLll19Kl7l69eqGDRtuueUWWvPWtWtX3qUEIRjlNikYVmpqqswl7Xa7xWJRtTDadN1117311lsjRoy4ePEifWXbtm0DBgzo1q1bUlJS69atT5w4sWvXLnZx06FDh3/84x8TJkxg7xATExOFcoMOIXJAcGazOT093a+fm3pF2GGBrt1+++0ffvjhPffcw1KHEHL48OHDhw/7LdmuXbs1a9b49VMQFxfHo5Sgf6hYA/E9/vjjchaTfz0kpOHDh+/cufO2224Lssxtt91WVlbWr1+/s2fPshebNWvWrFkz9QsIIsBVDohvwIABHTp0aGiMMsrhcBikk5sgevTosXnz5q1bt65cubK0tPTo0aOnT582m80JCQmDBg2aOHEiS+WTJ0+ytYIPXA0gFVNvl+YAgsnNzW2o02iqpKQkJSWFW3n0bvbs2YsXL6bTQ4YMkfM0DwBBxRoYRPAHPDt06IC8CcmWLVvYdL9+/aJYEtAXRA4YQnJycpBnPKdPn86zMHq3fft2aR9rAwcOjGJhQF8QOWAUjzzySEN/evDBB3mWRNcuX748c+ZMNtu2bVtplzkAwSFywCj8RqdmeI45rVlVVVXr169vdLHz58+np6d//fXX7JUpU6ZI+8sBCA6RA0ZBR6cOfN0gY04H5/F47rrrrltuuWXx4sVVVVWBC5w/f/7NN9/s06fPBx98wF7s0qUL+luDkKDFGhjI2rVrR40a5fdiTU0Nmkfv3r27T58+bLZTp04333xzu3btWrRocebMmZ9++mnnzp21tbXSVZo2bbp+/frbb7+dd1lBz/BcDhhI4OjUxhlzOiRVVVX1Xusw7dq1++CDD4I/NwoQCBVrYCCBo1MbZ8zp4Nq2bSuzy+1mzZpNmzZt9+7dyBsIAyrWwFjKy8ul3621tbXGGQO0URUVFVu2bPnyyy8PHjx45MiR06dPX7hwwWQytW3btl27djabLTU1ddiwYR06dIh2SUGvEDlgOB07dqSdIufk5GRlZUW7OAAGgoo1MBw2VKjRxpwGiDpc5YDheDye+Ph4q9V67NixaJcFwFgQOWBEHo+nTZs2uIsDwBkiBwAAOMG9HAAA4ASRAwAAnCByAACAE0QOAABwgsgBAABOEDkAAMAJIgcAADhB5AAAACeIHAAA4ASRAwAAnCByAACAE0QOAABwgsgBAABOEDkAAMAJIgcAADhB5AAAACeIHAAA4ASRAwAAnCByAACAE0QOAABwgsgBAABOEDkAAMAJIgcAADj5P2hHDjxlSb2WAAAAAElFTkSuQmCC",
fileName="modelica://ML/../resources/MagLevSchematics.png")}),
Diagram(coordinateSystem(preserveAspectRatio=false)));
end MagLevSchematicsIcon;
end Components;
annotation (
uses(Modelica(version = "3.2.2"), Modelica_DeviceDrivers(version="1.6.0")));
end ML;