diff --git a/ocrd_detectron2/segment.py b/ocrd_detectron2/segment.py index 0747041..45ccbdc 100644 --- a/ocrd_detectron2/segment.py +++ b/ocrd_detectron2/segment.py @@ -187,45 +187,47 @@ class id to a new PAGE region type (and subtype). else: zoomed = 1.0 - # for morphological post-processing, we will need the binarized image, too - page_image_bin, _, _ = self.workspace.image_from_page( - page, page_id, - feature_selector='binarized') - # workaround for OCR-D/core#687: - if 0 < abs(page_image_raw.width - page_image_bin.width) <= 2: - diff = page_image_raw.width - page_image_bin.width - if diff > 0: - page_image_raw = crop_image( - page_image_raw, - (int(np.floor(diff / 2)), 0, - page_image_raw.width - int(np.ceil(diff / 2)), - page_image_raw.height)) - else: - page_image_bin = crop_image( - page_image_bin, - (int(np.floor(-diff / 2)), 0, - page_image_bin.width - int(np.ceil(-diff / 2)), - page_image_bin.height)) - if 0 < abs(page_image_raw.height - page_image_bin.height) <= 2: - diff = page_image_raw.height - page_image_bin.height - if diff > 0: - page_image_raw = crop_image( - page_image_raw, - (0, int(np.floor(diff / 2)), - page_image_raw.width, - page_image_raw.height - int(np.ceil(diff / 2)))) - else: - page_image_bin = crop_image( - page_image_bin, - (0, int(np.floor(-diff / 2)), - page_image_bin.width, - page_image_bin.height - int(np.ceil(-diff / 2)))) + # check wether input image is binarized + if page_image_info.photometricInterpretation == "1": + # for morphological post-processing, we will need the binarized image, too + page_image_bin, _, _ = self.workspace.image_from_page( + page, page_id, + feature_selector='binarized') + # workaround for OCR-D/core#687: + if 0 < abs(page_image_raw.width - page_image_bin.width) <= 2: + diff = page_image_raw.width - page_image_bin.width + if diff > 0: + page_image_raw = crop_image( + page_image_raw, + (int(np.floor(diff / 2)), 0, + page_image_raw.width - int(np.ceil(diff / 2)), + page_image_raw.height)) + else: + page_image_bin = crop_image( + page_image_bin, + (int(np.floor(-diff / 2)), 0, + page_image_bin.width - int(np.ceil(-diff / 2)), + page_image_bin.height)) + if 0 < abs(page_image_raw.height - page_image_bin.height) <= 2: + diff = page_image_raw.height - page_image_bin.height + if diff > 0: + page_image_raw = crop_image( + page_image_raw, + (0, int(np.floor(diff / 2)), + page_image_raw.width, + page_image_raw.height - int(np.ceil(diff / 2)))) + else: + page_image_bin = crop_image( + page_image_bin, + (0, int(np.floor(-diff / 2)), + page_image_bin.width, + page_image_bin.height - int(np.ceil(-diff / 2)))) # ensure RGB (if raw was merely grayscale) if page_image_raw.mode == '1': page_image_raw = page_image_raw.convert('L') page_image_raw = page_image_raw.convert(mode='RGB') - page_image_bin = page_image_bin.convert(mode='1') + page_image_bin = page_image_raw.convert(mode='1') # reduce resolution to 300 DPI max if zoomed != 1.0: page_image_bin = page_image_bin.resize( @@ -267,7 +269,7 @@ def _process_page(self, page, ignore, page_coords, page_id, page_array_raw, page #page.set_TextRegion([]) page.set_custom('coords=%s' % page_coords['transform']) height, width, _ = page_array_raw.shape - # get connected components to estimate scale + # get connected components to estimate ignorescale _, components = cv2.connectedComponents(page_array_bin.astype(np.uint8)) # estimate glyph scale (roughly) _, counts = np.unique(components, return_counts=True)