-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathvideo.cpp
563 lines (447 loc) · 17.2 KB
/
video.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
//______________________________________________________________________________________
// Program : OpenCV based QR code Detection and Retrieval
// Author : Bharath Prabhuswamy
//______________________________________________________________________________________
#include <opencv2/opencv.hpp>
#include <iostream>
#include <cmath>
using namespace cv;
using namespace std;
const int CV_QR_NORTH = 0;
const int CV_QR_EAST = 1;
const int CV_QR_SOUTH = 2;
const int CV_QR_WEST = 3;
float cv_distance(Point2f P, Point2f Q); // Get Distance between two points
float cv_lineEquation(Point2f L, Point2f M, Point2f J); // Perpendicular Distance of a Point J from line formed by Points L and M; Solution to equation of the line Val = ax+by+c
float cv_lineSlope(Point2f L, Point2f M, int& alignement); // Slope of a line by two Points L and M on it; Slope of line, S = (x1 -x2) / (y1- y2)
void cv_getVertices(vector<vector<Point> > contours, int c_id,float slope, vector<Point2f>& X);
void cv_updateCorner(Point2f P, Point2f ref ,float& baseline, Point2f& corner);
void cv_updateCornerOr(int orientation, vector<Point2f> IN, vector<Point2f> &OUT);
bool getIntersectionPoint(Point2f a1, Point2f a2, Point2f b1, Point2f b2, Point2f& intersection);
float cross(Point2f v1,Point2f v2);
// Start of Main Loop
//------------------------------------------------------------------------------------------------------------------------
int main ( int argc, char **argv )
{
VideoCapture capture(0);
//Mat image = imread(argv[1]);
Mat image;
if(!capture.isOpened()) { cerr << " ERR: Unable find input Video source." << endl;
return -1;
}
//Step : Capture a frame from Image Input for creating and initializing manipulation variables
//Info : Inbuilt functions from OpenCV
//Note :
capture >> image;
if(image.empty()){ cerr << "ERR: Unable to query image from capture device.\n" << endl;
return -1;
}
// Creation of Intermediate 'Image' Objects required later
Mat gray(image.size(), CV_MAKETYPE(image.depth(), 1)); // To hold Grayscale Image
Mat edges(image.size(), CV_MAKETYPE(image.depth(), 1)); // To hold Grayscale Image
Mat traces(image.size(), CV_8UC3); // For Debug Visuals
Mat qr,qr_raw,qr_gray,qr_thres;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
vector<Point> pointsseq; //used to save the approximated sides of each contour
int mark,A,B,C,top,right,bottom,median1,median2,outlier;
float AB,BC,CA, dist,slope, areat,arear,areab, large, padding;
int align,orientation;
int DBG=1; // Debug Flag
int key = 0;
while(key != 'q') // While loop to query for Image Input frame
{
traces = Scalar(0,0,0);
qr_raw = Mat::zeros(100, 100, CV_8UC3 );
qr = Mat::zeros(100, 100, CV_8UC3 );
qr_gray = Mat::zeros(100, 100, CV_8UC1);
qr_thres = Mat::zeros(100, 100, CV_8UC1);
capture >> image; // Capture Image from Image Input
cvtColor(image,gray,CV_RGB2GRAY); // Convert Image captured from Image Input to GrayScale
Canny(gray, edges, 100 , 200, 3); // Apply Canny edge detection on the gray image
findContours( edges, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE); // Find contours with hierarchy
mark = 0; // Reset all detected marker count for this frame
// Get Moments for all Contours and the mass centers
vector<Moments> mu(contours.size());
vector<Point2f> mc(contours.size());
for( int i = 0; i < contours.size(); i++ )
{ mu[i] = moments( contours[i], false );
mc[i] = Point2f( mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00 );
}
// Start processing the contour data
// Find Three repeatedly enclosed contours A,B,C
// NOTE: 1. Contour enclosing other contours is assumed to be the three Alignment markings of the QR code.
// 2. Alternately, the Ratio of areas of the "concentric" squares can also be used for identifying base Alignment markers.
// The below demonstrates the first method
for( int i = 0; i < contours.size(); i++ )
{
//Find the approximated polygon of the contour we are examining
approxPolyDP(contours[i], pointsseq, arcLength(contours[i], true)*0.02, true);
if (pointsseq.size() == 4) // only quadrilaterals contours are examined
{
int k=i;
int c=0;
while(hierarchy[k][2] != -1)
{
k = hierarchy[k][2] ;
c = c+1;
}
if(hierarchy[k][2] != -1)
c = c+1;
if (c >= 5)
{
if (mark == 0) A = i;
else if (mark == 1) B = i; // i.e., A is already found, assign current contour to B
else if (mark == 2) C = i; // i.e., A and B are already found, assign current contour to C
mark = mark + 1 ;
}
}
}
if (mark >= 3) // Ensure we have (atleast 3; namely A,B,C) 'Alignment Markers' discovered
{
// We have found the 3 markers for the QR code; Now we need to determine which of them are 'top', 'right' and 'bottom' markers
// Determining the 'top' marker
// Vertex of the triangle NOT involved in the longest side is the 'outlier'
AB = cv_distance(mc[A],mc[B]);
BC = cv_distance(mc[B],mc[C]);
CA = cv_distance(mc[C],mc[A]);
if ( AB > BC && AB > CA )
{
outlier = C; median1=A; median2=B;
}
else if ( CA > AB && CA > BC )
{
outlier = B; median1=A; median2=C;
}
else if ( BC > AB && BC > CA )
{
outlier = A; median1=B; median2=C;
}
top = outlier; // The obvious choice
dist = cv_lineEquation(mc[median1], mc[median2], mc[outlier]); // Get the Perpendicular distance of the outlier from the longest side
slope = cv_lineSlope(mc[median1], mc[median2],align); // Also calculate the slope of the longest side
// Now that we have the orientation of the line formed median1 & median2 and we also have the position of the outlier w.r.t. the line
// Determine the 'right' and 'bottom' markers
if (align == 0)
{
bottom = median1;
right = median2;
}
else if (slope < 0 && dist < 0 ) // Orientation - North
{
bottom = median1;
right = median2;
orientation = CV_QR_NORTH;
}
else if (slope > 0 && dist < 0 ) // Orientation - East
{
right = median1;
bottom = median2;
orientation = CV_QR_EAST;
}
else if (slope < 0 && dist > 0 ) // Orientation - South
{
right = median1;
bottom = median2;
orientation = CV_QR_SOUTH;
}
else if (slope > 0 && dist > 0 ) // Orientation - West
{
bottom = median1;
right = median2;
orientation = CV_QR_WEST;
}
// To ensure any unintended values do not sneak up when QR code is not present
float area_top,area_right, area_bottom;
if( top < contours.size() && right < contours.size() && bottom < contours.size() && contourArea(contours[top]) > 10 && contourArea(contours[right]) > 10 && contourArea(contours[bottom]) > 10 )
{
vector<Point2f> L,M,O, tempL,tempM,tempO;
Point2f N;
vector<Point2f> src,dst; // src - Source Points basically the 4 end co-ordinates of the overlay image
// dst - Destination Points to transform overlay image
Mat warp_matrix;
cv_getVertices(contours,top,slope,tempL);
cv_getVertices(contours,right,slope,tempM);
cv_getVertices(contours,bottom,slope,tempO);
cv_updateCornerOr(orientation, tempL, L); // Re-arrange marker corners w.r.t orientation of the QR code
cv_updateCornerOr(orientation, tempM, M); // Re-arrange marker corners w.r.t orientation of the QR code
cv_updateCornerOr(orientation, tempO, O); // Re-arrange marker corners w.r.t orientation of the QR code
int iflag = getIntersectionPoint(M[1],M[2],O[3],O[2],N);
src.push_back(L[0]);
src.push_back(M[1]);
src.push_back(N);
src.push_back(O[3]);
dst.push_back(Point2f(0,0));
dst.push_back(Point2f(qr.cols,0));
dst.push_back(Point2f(qr.cols, qr.rows));
dst.push_back(Point2f(0, qr.rows));
if (src.size() == 4 && dst.size() == 4 ) // Failsafe for WarpMatrix Calculation to have only 4 Points with src and dst
{
warp_matrix = getPerspectiveTransform(src, dst);
warpPerspective(image, qr_raw, warp_matrix, Size(qr.cols, qr.rows));
copyMakeBorder( qr_raw, qr, 10, 10, 10, 10,BORDER_CONSTANT, Scalar(255,255,255) );
cvtColor(qr,qr_gray,CV_RGB2GRAY);
threshold(qr_gray, qr_thres, 127, 255, CV_THRESH_BINARY);
//threshold(qr_gray, qr_thres, 0, 255, CV_THRESH_OTSU);
//for( int d=0 ; d < 4 ; d++){ src.pop_back(); dst.pop_back(); }
}
//Draw contours on the image
drawContours( image, contours, top , Scalar(255,200,0), 2, 8, hierarchy, 0 );
drawContours( image, contours, right , Scalar(0,0,255), 2, 8, hierarchy, 0 );
drawContours( image, contours, bottom , Scalar(255,0,100), 2, 8, hierarchy, 0 );
// Insert Debug instructions here
if(DBG==1)
{
// Debug Prints
// Visualizations for ease of understanding
if (slope > 5)
circle( traces, Point(10,20) , 5 , Scalar(0,0,255), -1, 8, 0 );
else if (slope < -5)
circle( traces, Point(10,20) , 5 , Scalar(255,255,255), -1, 8, 0 );
// Draw contours on Trace image for analysis
drawContours( traces, contours, top , Scalar(255,0,100), 1, 8, hierarchy, 0 );
drawContours( traces, contours, right , Scalar(255,0,100), 1, 8, hierarchy, 0 );
drawContours( traces, contours, bottom , Scalar(255,0,100), 1, 8, hierarchy, 0 );
// Draw points (4 corners) on Trace image for each Identification marker
circle( traces, L[0], 2, Scalar(255,255,0), -1, 8, 0 );
circle( traces, L[1], 2, Scalar(0,255,0), -1, 8, 0 );
circle( traces, L[2], 2, Scalar(0,0,255), -1, 8, 0 );
circle( traces, L[3], 2, Scalar(128,128,128), -1, 8, 0 );
circle( traces, M[0], 2, Scalar(255,255,0), -1, 8, 0 );
circle( traces, M[1], 2, Scalar(0,255,0), -1, 8, 0 );
circle( traces, M[2], 2, Scalar(0,0,255), -1, 8, 0 );
circle( traces, M[3], 2, Scalar(128,128,128), -1, 8, 0 );
circle( traces, O[0], 2, Scalar(255,255,0), -1, 8, 0 );
circle( traces, O[1], 2, Scalar(0,255,0), -1, 8, 0 );
circle( traces, O[2], 2, Scalar(0,0,255), -1, 8, 0 );
circle( traces, O[3], 2, Scalar(128,128,128), -1, 8, 0 );
// Draw point of the estimated 4th Corner of (entire) QR Code
circle( traces, N, 2, Scalar(255,255,255), -1, 8, 0 );
// Draw the lines used for estimating the 4th Corner of QR Code
line(traces,M[1],N,Scalar(0,0,255),1,8,0);
line(traces,O[3],N,Scalar(0,0,255),1,8,0);
// Show the Orientation of the QR Code wrt to 2D Image Space
int fontFace = FONT_HERSHEY_PLAIN;
if(orientation == CV_QR_NORTH)
{
putText(traces, "NORTH", Point(20,30), fontFace, 1, Scalar(0, 255, 0), 1, 8);
}
else if (orientation == CV_QR_EAST)
{
putText(traces, "EAST", Point(20,30), fontFace, 1, Scalar(0, 255, 0), 1, 8);
}
else if (orientation == CV_QR_SOUTH)
{
putText(traces, "SOUTH", Point(20,30), fontFace, 1, Scalar(0, 255, 0), 1, 8);
}
else if (orientation == CV_QR_WEST)
{
putText(traces, "WEST", Point(20,30), fontFace, 1, Scalar(0, 255, 0), 1, 8);
}
// Debug Prints
}
}
}
imshow ( "Image", image );
imshow ( "Traces", traces );
imshow ( "QR code", qr_thres );
key = waitKey(1); // OPENCV: wait for 1ms before accessing next frame
} // End of 'while' loop
return 0;
}
// End of Main Loop
//--------------------------------------------------------------------------------------
// Routines used in Main loops
// Function: Routine to get Distance between two points
// Description: Given 2 points, the function returns the distance
float cv_distance(Point2f P, Point2f Q)
{
return sqrt(pow(abs(P.x - Q.x),2) + pow(abs(P.y - Q.y),2)) ;
}
// Function: Perpendicular Distance of a Point J from line formed by Points L and M; Equation of the line ax+by+c=0
// Description: Given 3 points, the function derives the line quation of the first two points,
// calculates and returns the perpendicular distance of the the 3rd point from this line.
float cv_lineEquation(Point2f L, Point2f M, Point2f J)
{
float a,b,c,pdist;
a = -((M.y - L.y) / (M.x - L.x));
b = 1.0;
c = (((M.y - L.y) /(M.x - L.x)) * L.x) - L.y;
// Now that we have a, b, c from the equation ax + by + c, time to substitute (x,y) by values from the Point J
pdist = (a * J.x + (b * J.y) + c) / sqrt((a * a) + (b * b));
return pdist;
}
// Function: Slope of a line by two Points L and M on it; Slope of line, S = (x1 -x2) / (y1- y2)
// Description: Function returns the slope of the line formed by given 2 points, the alignement flag
// indicates the line is vertical and the slope is infinity.
float cv_lineSlope(Point2f L, Point2f M, int& alignement)
{
float dx,dy;
dx = M.x - L.x;
dy = M.y - L.y;
if ( dy != 0)
{
alignement = 1;
return (dy / dx);
}
else // Make sure we are not dividing by zero; so use 'alignement' flag
{
alignement = 0;
return 0.0;
}
}
// Function: Routine to calculate 4 Corners of the Marker in Image Space using Region partitioning
// Theory: OpenCV Contours stores all points that describe it and these points lie the perimeter of the polygon.
// The below function chooses the farthest points of the polygon since they form the vertices of that polygon,
// exactly the points we are looking for. To choose the farthest point, the polygon is divided/partitioned into
// 4 regions equal regions using bounding box. Distance algorithm is applied between the centre of bounding box
// every contour point in that region, the farthest point is deemed as the vertex of that region. Calculating
// for all 4 regions we obtain the 4 corners of the polygon ( - quadrilateral).
void cv_getVertices(vector<vector<Point> > contours, int c_id, float slope, vector<Point2f>& quad)
{
Rect box;
box = boundingRect( contours[c_id]);
Point2f M0,M1,M2,M3;
Point2f A, B, C, D, W, X, Y, Z;
A = box.tl();
B.x = box.br().x;
B.y = box.tl().y;
C = box.br();
D.x = box.tl().x;
D.y = box.br().y;
W.x = (A.x + B.x) / 2;
W.y = A.y;
X.x = B.x;
X.y = (B.y + C.y) / 2;
Y.x = (C.x + D.x) / 2;
Y.y = C.y;
Z.x = D.x;
Z.y = (D.y + A.y) / 2;
float dmax[4];
dmax[0]=0.0;
dmax[1]=0.0;
dmax[2]=0.0;
dmax[3]=0.0;
float pd1 = 0.0;
float pd2 = 0.0;
if (slope > 5 || slope < -5 )
{
for( int i = 0; i < contours[c_id].size(); i++ )
{
pd1 = cv_lineEquation(C,A,contours[c_id][i]); // Position of point w.r.t the diagonal AC
pd2 = cv_lineEquation(B,D,contours[c_id][i]); // Position of point w.r.t the diagonal BD
if((pd1 >= 0.0) && (pd2 > 0.0))
{
cv_updateCorner(contours[c_id][i],W,dmax[1],M1);
}
else if((pd1 > 0.0) && (pd2 <= 0.0))
{
cv_updateCorner(contours[c_id][i],X,dmax[2],M2);
}
else if((pd1 <= 0.0) && (pd2 < 0.0))
{
cv_updateCorner(contours[c_id][i],Y,dmax[3],M3);
}
else if((pd1 < 0.0) && (pd2 >= 0.0))
{
cv_updateCorner(contours[c_id][i],Z,dmax[0],M0);
}
else
continue;
}
}
else
{
int halfx = (A.x + B.x) / 2;
int halfy = (A.y + D.y) / 2;
for( int i = 0; i < contours[c_id].size(); i++ )
{
if((contours[c_id][i].x < halfx) && (contours[c_id][i].y <= halfy))
{
cv_updateCorner(contours[c_id][i],C,dmax[2],M0);
}
else if((contours[c_id][i].x >= halfx) && (contours[c_id][i].y < halfy))
{
cv_updateCorner(contours[c_id][i],D,dmax[3],M1);
}
else if((contours[c_id][i].x > halfx) && (contours[c_id][i].y >= halfy))
{
cv_updateCorner(contours[c_id][i],A,dmax[0],M2);
}
else if((contours[c_id][i].x <= halfx) && (contours[c_id][i].y > halfy))
{
cv_updateCorner(contours[c_id][i],B,dmax[1],M3);
}
}
}
quad.push_back(M0);
quad.push_back(M1);
quad.push_back(M2);
quad.push_back(M3);
}
// Function: Compare a point if it more far than previously recorded farthest distance
// Description: Farthest Point detection using reference point and baseline distance
void cv_updateCorner(Point2f P, Point2f ref , float& baseline, Point2f& corner)
{
float temp_dist;
temp_dist = cv_distance(P,ref);
if(temp_dist > baseline)
{
baseline = temp_dist; // The farthest distance is the new baseline
corner = P; // P is now the farthest point
}
}
// Function: Sequence the Corners wrt to the orientation of the QR Code
void cv_updateCornerOr(int orientation, vector<Point2f> IN,vector<Point2f> &OUT)
{
Point2f M0,M1,M2,M3;
if(orientation == CV_QR_NORTH)
{
M0 = IN[0];
M1 = IN[1];
M2 = IN[2];
M3 = IN[3];
}
else if (orientation == CV_QR_EAST)
{
M0 = IN[1];
M1 = IN[2];
M2 = IN[3];
M3 = IN[0];
}
else if (orientation == CV_QR_SOUTH)
{
M0 = IN[2];
M1 = IN[3];
M2 = IN[0];
M3 = IN[1];
}
else if (orientation == CV_QR_WEST)
{
M0 = IN[3];
M1 = IN[0];
M2 = IN[1];
M3 = IN[2];
}
OUT.push_back(M0);
OUT.push_back(M1);
OUT.push_back(M2);
OUT.push_back(M3);
}
// Function: Get the Intersection Point of the lines formed by sets of two points
bool getIntersectionPoint(Point2f a1, Point2f a2, Point2f b1, Point2f b2, Point2f& intersection)
{
Point2f p = a1;
Point2f q = b1;
Point2f r(a2-a1);
Point2f s(b2-b1);
if(cross(r,s) == 0) {return false;}
float t = cross(q-p,s)/cross(r,s);
intersection = p + t*r;
return true;
}
float cross(Point2f v1,Point2f v2)
{
return v1.x*v2.y - v1.y*v2.x;
}
// EOF