This repository has been archived by the owner on Feb 23, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 135
/
bfsBTree.cpp
162 lines (139 loc) · 3.01 KB
/
bfsBTree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// Recursive CPP program for level
// order traversal of Binary Tree
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data,
pointer to left child
and a pointer to right child */
class node
{
public:
int data;
node* left, *right;
};
/* Function protoypes */
void printCurrentLevel(node* root, int level);
int height(node* node);
node* newNode(int data);
/* Function to print level
order traversal a tree*/
void printLevelOrder(node* root)
{
int h = height(root);
int i;
for (i = 1; i <= h; i++)
printCurrentLevel(root, i);
}
/* Print nodes at a current level */
void printCurrentLevel(node* root, int level)
{
if (root == NULL)
return;
if (level == 1)
cout << root->data << " ";
else if (level > 1)
{
printCurrentLevel(root->left, level-1);
printCurrentLevel(root->right, level-1);
}
}
/* Compute the "height" of a tree -- the number of
nodes along the longest path from the root node
down to the farthest leaf node.*/
int height(node* node)
{
if (node == NULL)
return 0;
else
{
/* compute the height of each subtree */
int lheight = height(node->left);
int rheight = height(node->right);
/* use the larger one */
if (lheight > rheight)
{
return(lheight + 1);
}
else {
return(rheight + 1);
}
}
}
/* Helper function that allocates
a new node with the given data and
NULL left and right pointers. */
node* newNode(int data)
{
node* Node = new node();
Node->data = data;
Node->left = NULL;
Node->right = NULL;
return(Node);
}
/* Driver code*/
int main()
{
node *root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
cout << "Level Order traversal of binary tree is \n";
printLevelOrder(root);
return 0;
}
// This code is contributed by rathbhupendra
/* C++ program to print level
order traversal using STL */
#include <bits/stdc++.h>
using namespace std;
// A Binary Tree Node
struct Node
{
int data;
struct Node *left, *right;
};
// Iterative method to find height of Binary Tree
void printLevelOrder(Node *root)
{
// Base Case
if (root == NULL) return;
// Create an empty queue for level order traversal
queue<Node *> q;
// Enqueue Root and initialize height
q.push(root);
while (q.empty() == false)
{
// Print front of queue and remove it from queue
Node *node = q.front();
cout << node->data << " ";
q.pop();
/* Enqueue left child */
if (node->left != NULL)
q.push(node->left);
/*Enqueue right child */
if (node->right != NULL)
q.push(node->right);
}
}
// Utility function to create a new tree node
Node* newNode(int data)
{
Node *temp = new Node;
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
// Driver program to test above functions
int main()
{
// Let us create binary tree shown in above diagram
Node *root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
cout << "Level Order traversal of binary tree is \n";
printLevelOrder(root);
return 0;
}