forked from gadial/ECC
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathecprime.cpp
374 lines (338 loc) · 9.94 KB
/
ecprime.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*
* ECPrime.cpp
*
* Created on: Nov 22, 2009
* Author: bhess
*/
#include <stdlib.h>
#include "ecprime.h"
#include "hcp.h"
ECPrime::ECPrime() {
}
ECPrime::~ECPrime() {
// TODO Auto-generated destructor stub
}
ECPrime ECPrime::randomCurve(int number_of_bits, RandomNumberGenerator gen){
mpz_class p = gen.generate_prime(number_of_bits);
mpz_class a = gen.rand(p);
mpz_class b = gen.rand(p);
//TODO: check that the curve is smooth
return ECPrime(p,a,b);
}
bool ECPrime::check_order(mpz_class order_candidate){
//a somewhat naive test... is there something better?
RandomNumberGenerator gen;
for (int i=0; i<10; i++){
zp_int x;
ZpCoordinate P;
do {
x = gen.generate_modulu_p(mod);
P = getPoint(x);
} while (P.isInfinite());
if (!pointMultiplication(P,order_candidate).isInfinite())
return false;
}
return true;
}
static ECPrime::ECPrime randomCurveFromDiscriminant(int D, int number_of_bits, RandomNumberGenerator gen){
#define SMOOTHNESS_ALLOWED 2
#define MIN_SIZE_ALLOWED 10000
mpz_class t,s;
mpz_class u1,u2;
mpz_class p;
mpz_class u = 0;
while (u == 0){
p = gen.generate_prime_for_discriminant(number_of_bits,D, t,s); //4p=t^2+Ds^2
u1 = p+1-t;
u2 = p+1+t;
if (is_near_prime(u1,SMOOTHNESS_ALLOWED,MIN_SIZE_ALLOWED))
u = u1;
if (is_near_prime(u2,SMOOTHNESS_ALLOWED,MIN_SIZE_ALLOWED))
u = u2;
}
ModularPolynomial pol = ModularPolynomial::build_hcp_from_discriminant(D,p);
zp_int j0 = pol.find_one_root();
zp_int k = j0/(zp_int(1728,p)-j0);
zp_int c = gen.generate_modulu_p(p);
zp_int a = k*3*(c^2);
zp_int b = k*(c^3);
ECPrime candidate(p,a,b);
if (!candidate.check_order(u)){
zp_int e = gen.generate_qnr_modulu_p(p);
candidate = ECPrime(p,a*(e^2),b*(e^3));
}
candidate.setOrder(u);
return candidate;
}
ECPrime ECPrime::normalizedCurveFromDiscriminantAndPrime(int D, mpz_class p, int HCP_root_number){
#define SMOOTHNESS_ALLOWED 2
#define MIN_SIZE_ALLOWED 10000
mpz_class t,s;
mpz_class u1,u2;
if (!extended_cornacchia(p,D,t,s))
throw "No suitable curve can be found (reason: Cornacchia failed)";
u1 = p+1-t;
u2 = p+1+t;
ModularPolynomial pol = ModularPolynomial::build_hcp_from_discriminant(D,p);
NumberArray roots = pol.find_roots();
if (roots.size() <= HCP_root_number)
throw "no root of the specified index";
zp_int j0 = roots[HCP_root_number];
zp_int k = j0/(zp_int(1728,p)-j0);
zp_int c = modular_square_root((-k).inverse());
if (c == 0)
throw "No suitable curve can be found (reason: given k, could not compute c)";
zp_int a = k*3*(c^2); //should be -3
zp_int b = k*2*(c^3);
ECPrime candidate(p,a,b);
if (candidate.check_order(u1)){
candidate.setOrder(u1);
return candidate;
}
if (candidate.check_order(u2)){
candidate.setOrder(u1);
return candidate;
}
// zp_int e = gen.generate_qnr_modulu_p(p);
// candidate = ECPrime(p,a*(e^2),b*(e^3));
// if (candidate.check_order(u1)){
// candidate.setOrder(u1);
// return candidate;
// }
// if (candidate.check_order(u2)){
// candidate.setOrder(u1);
// return candidate;
// }
throw "No suitable curve can be found (reason: not of suitable order)";
}
ZpCoordinate ECPrime::get_random_point(){
RandomNumberGenerator gen;
ZpCoordinate P = ZpCoordinate::infinity();
zp_int x;
while (P == ZpCoordinate::infinity()){
x = gen.generate_modulu_p(mod);
P = getPoint(x);
}
return P;
}
ZpCoordinate ECPrime::addition(ZpCoordinate P, ZpCoordinate Q) {
return ZpCoordinate(addition(ZpJacobian(P), Q));
}
ZpCoordinate ECPrime::subtraction(ZpCoordinate P, ZpCoordinate Q) {
return ZpCoordinate(subtraction(ZpJacobian(P), Q));
}
ZpCoordinate ECPrime::getPointFromCompressedForm(string form){
// cout << "got form = " << form << endl;
int y_mod_2;
switch (form[0]){
case '+': y_mod_2 = 1; break;
case '-': y_mod_2 = 0; break;
default: throw "form is not legal";
}
form.erase(0,1); //removing the "+" or "-" in the beginning and remaining with the x-coordinate
mpz_class x;
mpz_set_str(x.get_mpz_t(), form.c_str(), 10);
ZpCoordinate result = getPoint(x);
if ((result.Y) % 2 != y_mod_2)
result = getPoint(x,true);
return result;
}
string ECPrime::toCompressedForm(Coordinate c) {
string result;
mpz_class temp = c.Y % 2;
switch (temp.get_ui()){
case 0: result += '-'; break;
case 1: result += '+'; break;
}
result += c.X.get_str(10);
return result;
}
ZpCoordinate ECPrime::doubling(ZpCoordinate P) {
// cout << "(doubling) P.p = " << P.p << endl;
// cout << "(doubling) jac(P).p = " << ZpJacobian(P).Z.get_p() << endl;
// cout << "(doubling) d(jac(P)).p = " << doubling(ZpJacobian(P)).Z.get_p() << endl;
// cout << "(doubling) output.p = " << ZpCoordinate(doubling(ZpJacobian(P))).p << endl;
return ZpCoordinate(doubling(ZpJacobian(P)));
}
ZpCoordinate ECPrime::repeatedDoubling(ZpCoordinate P, int m) {
return ZpCoordinate(repeatedDoubling(ZpJacobian(P), m));
}
ZpJacobian ECPrime::addition(ZpJacobian P, ZpCoordinate Q) {
//We assume that P != Q,-Q
//If P==Q use doubling
//if P==-Q, return 0
//I treat a**2 as simply a*a since I can't see an optimization
//for it in gmp
if (P.isInfinite()) {
return ZpJacobian(Q);
}
if (Q.isInfinite()) {
return P;
}
ZpCoordinate temp = ZpCoordinate(P);
if (temp == Q){
return doubling(P);
}
if (temp == getNegative(Q)){
return ZpJacobian::infinity(P.p);
}
zp_int X3,Y3,Z3;
if (ECC_a != -3){
//pg. 89 - dealing with the general case where a != -3
zp_int A,B,C,D,E,F,G,H,I;
A = P.Z * P.Z;
B = P.Z * A;
C = Q.X * A;
D = Q.Y * B;
E = C - P.X;
F = D - P.Y;
G = E * E;
H = G * E;
I = P.X * G;
X3 = F*F - (H+I*2); //cout << "F = " << F << ", H= " << H << ", I=" << I << endl;
Y3 = F*(I-X3)-P.Y*H;
Z3 = P.Z * E;
}
else{
//pg. 91 - dealing with the case a == 3
zp_int T1,T2,T3,T4;
T1 = P.Z * P.Z;
T2 = T1 * P.Z;
T1 = T1 * Q.X;
T2 = T2 * Q.Y;
T1 = T1 - P.X;
T2 = T2 - P.Y;
if (T1 == 0)
if (T2 == 0)
return doubling(ZpJacobian(Q));
else
return ZpCoordinate::infinity();
Z3 = P.Z * T1;
T3 = T1 * T1;
T4 = T3 * T1;
T3 = T3 * P.X;
T1 = T3 * 2;
X3 = T2 * T2;
X3 = X3 - T1;
X3 = X3 - T4;
T3 = T3 - X3;
T3 = T3 * T2;
T4 = T4 * P.Y;
Y3 = T3 - T4;
}
return ZpJacobian(X3,Y3,Z3);
}
ZpJacobian ECPrime::subtraction(ZpJacobian P, ZpCoordinate Q) {
return addition(P, getNegative(Q));
}
ZpJacobian ECPrime::doubling(ZpJacobian P) {
//I treat a**2 as simply a*a since I can't see an optimization
//for it in gmp
if (P.isInfinite())
return P;
// cout << "P = " << P << endl;
zp_int X3,Y3,Z3;
if (ECC_a != -3){
//pg. 88 - dealing with the general case where a != -3
zp_int A,B,C,D;
A = P.Y * P.Y;
B = P.X*4 * A;
C = A*8 * A;
D = P.X*P.X*3 + P.Z*P.Z*P.Z*P.Z*ECC_a;
X3 = D*D-(B*2);
Y3 = D*(B-X3) - C;
Z3 = P.Y*P.Z*2;
}
else{
//pg. 91 - dealing with the case a==-3
zp_int T1, T2, T3;
T1 = P.Z*P.Z;
T2 = P.X - T1;
T1 = P.X + T1;
T2 = T2 * T1;
T2 = T2 * 3;
Y3 = P.Y * 2;
Z3 = Y3 * P.Z;
Y3 = Y3 * Y3;
T3 = Y3 * P.X;
Y3 = Y3 * Y3;
Y3 = Y3 / 2;
X3 = T2 * T2;
T1 = T3 * 2;
X3 = X3 - T1;
T1 = T3 - X3;
T1 = T1 * T2;
Y3 = T1 - Y3;
}
// X3 = X3 % mod;
// Y3 = Y3 % mod;
// Z3 = Z3 % mod;
return ZpJacobian(X3,Y3,Z3);
}
ZpCoordinate ECPrime::pointMultiplication(ZpCoordinate P, mpz_class k) {
// implementation according to p.99
if (P.isInfinite()) {
return ZpCoordinate::infinity();
}
std::vector<int> naf = getNAF(k);
ZpJacobian Q = ZpJacobian::infinity(P.p);
for (int i = naf.size() - 1; i >= 0; --i) {
Q = doubling(Q);
if (naf[i] == 1) {
Q = addition(Q, P);
} else if (naf[i] == -1) {
Q = subtraction(Q, P);
}
}
return ZpCoordinate(Q);
}
ZpJacobian ECPrime::repeatedDoubling(ZpJacobian P, int m) {
// TODO: test...
if (P.isInfinite()) {
return P;
} else if (ECC_a != -3){ //naive, for the case a != -3
ZpJacobian temp = P;
for (int i=1; i<=m; i++)
temp = doubling(temp);
return temp;
} else { // For the case a==-3
zp_int Y, W, A, B, X, Z, tmp_W;
X = P.X; Y = P.Y; Z = P.Z;
mpz_class const_4 = 4;
Y *= 2;
W = (P.Z^const_4);
while (m > 0) {
A = (X*X - W) * 3;
B = X * Y * Y;
X = A*A - B*2;
Z = Z * Y;
if (--m > 0) {
tmp_W = W;
W = (Y^const_4);
// avoid computing y^4 two times -> W is now Y^4
Y = A * (B - X) * 2 - W;
W = tmp_W * W;
} else {
// Y <-mod Y^4
Y = (Y^const_4);
Y = A * (B - X) * 2 - Y;
}
}
Y = (Y / 2);
return ZpJacobian(X, Y, Z);
}
}
ZpCoordinate ECPrime::getPoint(zp_int x, bool negative_value){
// cout << "finding out y for x = " << x << endl;
// cout << "generating modulu x.p = " << x.get_p() << endl;
zp_int y = modular_square_root(x*x*x + ECC_a*x + ECC_b);
// cout << "generating modulu y.p = " << y.get_p() << endl;
if (y == 0)
return ZpCoordinate::infinity();
if (negative_value)
return ZpCoordinate(x,-y,mod);
return ZpCoordinate(x,y,mod);
}
ZpCoordinate ECPrime::getNegative(const ZpCoordinate& P){
return ZpCoordinate(P.X, -P.Y,P.p);
}