forked from spacetelescope/ramp_simulator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
moving_targets.py
465 lines (365 loc) · 18.8 KB
/
moving_targets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#! /usr/bin/env python
'''
Class that simulates moving targets as viewed on a JWST instrument. Written
to accompany ramp_simulator.py
'''
from astropy.io import fits
import numpy as np
import sys
class MovingTarget():
def __init__(self):
self.verbose = False
self.subsampx = 3
self.subsampy = 3
#def create(self,stamp,xinit,yinit,rate,posang,frametime,numframes,subsample_factor,outx,outy):
#def create(self,stamp,rainit,decinit,rarate,decrate,frametime,numframes,subsample_factor,outx,outy):
def create(self,stamp,xframes,yframes,frametime,outx,outy):
#inputs include the stamp image of the object, the initial
#x and y location, the rate at which the object is moving
#(in pixels/sec) and the position angle (degrees), to describe the
#direction in which the object is moving.
#assume xinit is ra,dec. time calc stays same.
#velocity is arcsec/sec
#assume an ra_velocity and dec_velocity input
#xframes,yframes then in ra,dec
#translate xframes,yframes to x,y
#make sure subsampling factor is an integer
self.subsampx = np.int(self.subsampx)
self.subsampy = np.int(self.subsampy)
#quick fix for the case where xinit,yinit are integers
xinit = np.float(xframes[1])
yinit = np.float(yframes[1])
#change position angle to radians
#posang = posang * np.pi / 180.
#inverse rate
#rate = np.sqrt(rarate*rarate + decrate*decrate)
#secPerPix = 1./ rate
#CALCULATE THIS WITHIN EACH FRAME
#list of times for all frames
numframes = len(xframes)-1
times = frametime * np.arange(-1,numframes)
#list of RA,Dec positions for all frames
#raframes,decframes = self.radecPerFrame(xinit,yinit,rarate,decrate,time)
#raframes = rainit + rarate*times
#decrames = decinit + decrate*times
#calculate the x,y location of the object in each frame
#Include the x,y location at the time of detector reset,
#so that we can generate a realistic frame 0.
#xframes,yframes = self.xyPerFrame(rate,times,posang,xinit,yinit)
#generate a list of locations at dist-pixel increments
#between the beginning and ending locations
xs, ys = self.equidistantXY(xframes[0],yframes[0],xframes[-1],yframes[-1],1./self.subsampx) #,posang)
#print('xs,ys',xs,ys)
#subsample the PSF image
substamp = self.subsample(stamp,self.subsampx,self.subsampy)
substamplen = substamp.shape
#create the initial output frame
ystamplen,xstamplen = stamp.shape
#minx = np.min([np.floor(xinit) - np.ceil(xstamplen/2.),np.floor(xframes[-1])-np.ceil(xstamplen/2.)])
minx = np.int(np.min([np.floor(xframes[0]) - np.ceil(xstamplen/2.),np.floor(xframes[-1])-np.ceil(xstamplen/2.)]))
#print(xinit,xstamplen/2,xframes[-1])
#print("intially, mnx is: {}".format(minx))
maxx = np.int(np.max([np.floor(xframes[-1] + xstamplen/2.),np.floor(xframes[0]+xstamplen/2.)]))
#print('maxx is {}. xframes[0] and [-1] are {},{}, stamplen is {}'.format(maxx,xframes[0],xframes[-1],xstamplen))
#miny = np.min([np.floor(yinit) - np.ceil(ystamplen/2.),np.floor(yframes[-1])-np.ceil(ystamplen/2.)])
miny = np.int(np.min([np.floor(yframes[0]) - np.ceil(ystamplen/2.),np.floor(yframes[-1])-np.ceil(ystamplen/2.)]))
maxy = np.int(np.max([np.floor(yframes[-1] + ystamplen/2.),np.floor(yframes[0]+ystamplen/2.)]))
#Don't let stamps fall off the edges of the output array
mnx = minx
mxx = maxx
mny = miny
mxy = maxy
if minx < 0:
mnx = 0
if maxx > outx:
mxx = np.int(outx-1)
if miny < 0:
mny = 0
if maxy > outy:
mxy = np.int(outy-1)
#print("Now, minx is {}".format(mnx))
#sys.exit()
#subsample the output frame
totxpoints = np.min([outx,mxx-mnx+1])
totypoints = np.min([outy,mxy-mny+1])
#print('totxpoints,outx,mxx,mnx',totxpoints,outx,mxx,mnx)
#print('totypoints,outy,mxy,mny',totypoints,outy,mxy,mny)
#print(totypoints,self.subsampy,totxpoints,self.subsampx,outx,mnx,mxx,mny,mxy)
#print(minx,maxx,miny,maxy)
outputframe0 = np.zeros((np.int(totypoints*self.subsampy),np.int(totxpoints*self.subsampx)))
#sys.exit()
outputframe1 = np.zeros((np.int(totypoints*self.subsampy),np.int(totxpoints*self.subsampx)))
outfull = np.zeros((numframes,outy,outx))
outsubshape = outputframe0.shape
#print('x,y stamp size',xstamplen,ystamplen)
#print("miny,maxy in full frame coords: ",miny,maxy)
#print("minx,maxx in full frame coords: ",minx,maxx)
#print('xframes in full frame coords:',xframes)
#print('yframes in full frame coords:',yframes)
#translate the source location x and y values to the coordinates
#of the output frame
deltacenterx = np.round(self.subsampx / 2. - 1 + 0.000001)
deltacentery = np.round(self.subsampy / 2. - 1 + 0.000001)
xframessub = np.round((xframes-mnx) * self.subsampx) + deltacenterx
yframessub = np.round((yframes-mny) * self.subsampy) + deltacentery
xssub = np.round((xs-mnx) * self.subsampx) + deltacenterx
yssub = np.round((ys-mny) * self.subsampy) + deltacentery
#print('xssub',xssub)
#print('yssub',yssub)
#now create the multiple-frame integration using subsampled frames
#check to see if the source is off, or partially off the detector.
#Adjust coordinate indexes as necessary, and keep track of coordinates
#in the stamp image
#outxmin,outxmax,stampxmin,stampxmax = self.coordCheck(xframessub[1],substamplen[1],outsubshape[1])
#outymin,outymax,stampymin,stampymax = self.coordCheck(xframessub[0],substamplen[0],outsubshape[0])
#print(outxmin,outxmax,stampxmin,stampxmax)
#print(outymin,outymax,stampymin,stampymax)
#outcoords = np.array([outxmin,outxmax,outymin,outymax])
# # outputframe[0,yframessub[0]-substamplen[0]/2:yframessub[0]+substamplen[0]/2,xframessub[0]-substamplen[1]/2:xframessub[0]+substamplen[1]/2] += substamp
##if any of the coordinates are set to NaN, then the stamp image is completely off
##the output frame and it shouldn't be added
#if np.all(np.isfinite(outcoords)):
# outputframe[0,outymin:outymax,outxmin,outxmax] += substamp[stampymin:stampymax,stampxmin,stampxmax]
for i in xrange(1,numframes+1):
#for frames after the 0th, start with the previous frame
#if i != 0:
#outputframe[i-1,:,:] = np.copy(outputframe[i-2,:,:])
#print("Working on frame number: {}".format(i-1))
#find the velocity of the source during this frame
xvelocity = (xframes[i]-xframes[i-1]) / frametime
yvelocity = (yframes[i]-yframes[i-1]) / frametime
secPerPix = 1. / np.sqrt(xvelocity*xvelocity + yvelocity*yvelocity)
#print('velocities:',xvelocity,yvelocity,secPerPix)
#print("Trying to calculate xs, xssub separate for each frame! Check for correctness!!!!")
#xs, ys = self.equidistantXY(xframes[i-1],yframes[i-1],xframes[1],yframes[1],1./self.subsampx)
#xssub = np.round((xs-mnx) * self.subsampx) + deltacenterx
#yssub = np.round((ys-mnx) * self.subsampy) + deltacentery
outputframe1 = np.copy(outputframe0)
#print('LIMITS TO FIND STEPS: {}, {}'.format(xframessub[i-1],xframessub[i]))
#print(yssub,yframessub[i-1],yframessub[i])
if xframessub[i-1] < xframessub[i]:
goodxs = ((xssub > (xframessub[i-1]+1e-7)) & (xssub < (xframessub[i]-1e-7)))
else:
goodxs = ((xssub > (xframessub[i]+1e-7)) & (xssub < (xframessub[i-1]-1e-7)))
if yframessub[i-1] < yframessub[i]:
goodys = ((yssub > (yframessub[i-1]+1e-7)) & (yssub < (yframessub[i]-1e-7)))
else:
goodys = ((yssub > (yframessub[i]+1e-7)) & (yssub < (yframessub[i-1]-1e-7)))
xsum = np.sum(goodxs)
ysum = np.sum(goodys)
if xsum >= ysum:
good = goodxs
else:
good = goodys
#print('goodxs:',xssub[good])
#print('goodys:',yssub[good])
#print("making frame:")
#print(xframessub[i-1:i+1],yframessub[i-1:i+1],xssub[good],yssub[good],secPerPix)
#outputframe[i-1,:,:] = self.inputMotion(outputframe[i-1,:,:],substamp,xframessub[i-1:i+1],yframessub[i-1:i+1],xssub[good],yssub[good],secPerPix)
#print(" ")
#print('xstart xend, ystart, yend, xmidpts, ymidpts')
#print(xframessub[i-1:i+1],yframessub[i-1:i+1],xssub[good],yssub[good])
#print(" ")
#goodones = xssub[good]
#print(xframessub[i-1],goodones[0])
#if xframessub[i-1] > goodones[0]:
# print("frame limit is greater.")
#elif xframessub[i-1] < goodones[0]:
# print("xssub is greater")
#elif xframessub[i-1] == goodones[0]:
# print('they are equal')
#print('Going into inputMotion:')
#print('outputframe1 shape',outputframe1.shape)
#print('subsampled stamp shape',substamp.shape)
#print('source location: x: {} to {}, y: {} to {}'.format(xframessub[i-1],xframessub[i],yframessub[i-1],yframessub[i]))
#print('locations to use:',xssub[good],yssub[good])
#if (np.all((xframessub[i-1:i+1]-substamplen[1]) > outsubshape[1]) or (np.all((yframessub[i-1:i+1]-substamplen[0]) > outsubshape[0]))):
# print(xframessub[i-1:i+1])
# print(substamplen)
# print(outsubshape[1])
# print("For frame {}, entire stamp is left or above the fov".format(i-1))
# outputframe1 = np.copy(outputframe0)
#elif (np.all((xframessub[i-1:i+1]+substamplen[1]) < 0) or (np.all((yframessub[i-1:i+1]+substamplen[0]) < 0))):
# print(xframessub[i-1:i+1])
# print(substamplen)
# print("0.")
# print("For frame {}, entire stamp is right or below the fov".format(i-1))
# outputframe1 = np.copy(outputframe0)
if (np.all((xframes[i-1:i+1]-xstamplen) > outx) or (np.all((yframes[i-1:i+1]-ystamplen) > outy))):
#print(xframes[i-1:i+1])
#print(xstamplen)
#print(outx)
#print("For frame {}, entire stamp is left or above the fov".format(i-1))
outputframe1 = np.copy(outputframe0)
elif (np.all((xframes[i-1:i+1]+xstamplen) < 0) or (np.all((yframes[i-1:i+1]+ystamplen) < 0))):
#print(xframes[i-1:i+1])
#print(xstamplen)
#print("0.")
#print("For frame {}, entire stamp is right or below the fov".format(i-1))
outputframe1 = np.copy(outputframe0)
else:
#print(xframes[i-1:i+1])
#print(xstamplen)
#print(xframes[i-1:i+1]-xstamplen,xframes[i-1:i+1]+xstamplen)
#print("For frame {}, stamp is at least partially within the fov".format(i-1))
#print("going into inputmotion")
#print(xframessub[i-1:i+1],yframessub[i-1:i+1],xssub[good],yssub[good],secPerPix)
outputframe1 = self.inputMotion(outputframe1,substamp,xframessub[i-1:i+1],yframessub[i-1:i+1],xssub[good],yssub[good],secPerPix)
#h0 = fits.PrimaryHDU()
#h1 = fits.ImageHDU(outputframe1)
#hl = fits.HDUList([h0,h1])
#oname = 'test.fits'
#hl.writeto(oname,clobber=True)
#print(mnx,mxx,mny,mxy)
#print(xframes)
#sys.exit()
outputframe0 = np.copy(outputframe1)
#oname = 'test_movingtarg_out_frame_'+str(i)+'.fits'
#h0 = fits.PrimaryHDU(outputframe1)
#hl = fits.HDUList([h0])
#hl.writeto(oname,clobber=True)
#put the output frames back to the original resolution
#print("miny,maxy: ",miny,maxy)
#print(outfull[i-1,mny:mxy+1,mnx:mxx+1].shape,test.shape)
#print(outputframe1.shape,test.shape)
#print(mnx,mxx,mny,mxy)
#check for sources that fall off the edges of the output array
outfull[i-1,mny:mxy+1,mnx:mxx+1] = self.resample(outputframe1,self.subsampx,self.subsampy)
#h0 = fits.PrimaryHDU()
#h1 = fits.ImageHDU(outfull)
#hl = fits.HDUList([h0,h1])
#oname = 'test_movingtarg_out_frame_origres'+str(i)+'.fits'
#hl.writeto(oname,clobber=True)
#sys.exit()
return outfull
def resample(self,frame,sampx,sampy):
#return subsampled image back to original resolution
framey,framex = frame.shape
newframe = np.zeros((framey/sampy,framex/sampx))
newframey,newframex = newframe.shape
for j in xrange(newframey):
for i in xrange(newframex):
newframe[j,i] = np.sum(frame[sampy*j:sampy*(j+1),sampx*i:sampx*(i+1)])
return newframe
def coordCheck(self,center,len_stamp,len_out):
#center = xframessub[0]
#len_stamp = substamplen
#len_out = outsubshape
outxmin = center - len_stamp/2
outxmax = outxmin + len_stamp
stampxmin = 0
stampxmax = len_stamp
#print('center,len',center,len_stamp)
#print('before checks!!!',outxmin,outxmax,stampxmin,stampxmax)
#left edge of stamp is off the edge of output
if outxmin < 0:
#print('left edge of stamp is off')
if outxmin >= (0.-len_stamp):
stampxmin = 0 - outxmin
outxmin = 0
else:
#here the image is completely off the output frame
stampxmin = np.nan
outxmin = np.nan
stampxmax = np.nan
outxmax = np.nan
#right edge of stamp is off the edge of the output
if outxmax > len_out:
#print('right edge of stamp is off')
if outxmax <= (len_out+len_stamp):
delta = outxmax - len_out
stampxmax = len_stamp - delta
outxmax = len_out
else:
#here the image is completely off the left side of output
outxmax = np.nan
stampxmax = np.nan
outxmin = np.nan
stampxmin = np.nan
#print('after checks!!!',outxmin,outxmax,stampxmin,stampxmax)
return np.int(outxmin),np.int(outxmax),np.int(stampxmin),np.int(stampxmax)
def inputMotion(self,inframe,source,xbounds,ybounds,xs,ys,secperpix):
#smear out the source to create an output frame image
#given the necessary info about the source location and velocity
frameylen,framexlen = inframe.shape
srcylen,srcxlen = source.shape
xlist = np.append(xs,xbounds[1])
ylist = np.append(ys,ybounds[1])
xlist = np.insert(xlist,0,xbounds[0])
ylist = np.insert(ylist,0,ybounds[0])
#print('xlist',xlist)
#print('ylist',ylist)
xlist = np.round(xlist)
ylist = np.round(ylist)
#print('xlist',xlist)
#print('ylist',ylist)
for i in xrange(1,len(xlist)):
#print('Working on location {},{}'.format(xlist[i],ylist[i]))
outxmin,outxmax,stampxmin,stampxmax = self.coordCheck(xlist[i],srcxlen,framexlen)
outymin,outymax,stampymin,stampymax = self.coordCheck(ylist[i],srcylen,frameylen)
#print(outxmin,outxmax,stampxmin,stampxmax,srcxlen,framexlen)
outcoords = np.array([outxmin,outxmax,outymin,outymax])
#if any of the coordinates are set to NaN, then the stamp image is completely off
#the output frame and it shouldn't be added
if np.all(np.isfinite(outcoords)):
dist = np.sqrt((xlist[i]-xlist[i-1])**2 + (ylist[i]-ylist[i-1])**2)
#print('distance is {}'.format(dist))
#print('x-coords',outxmin,outxmax,stampxmin,stampxmax)
#print('y-coords',outymin,outymax,stampymin,stampymax)
#inframe[ylist[i]-np.ceil(srcylen/2.):ylist[i]+np.ceil(srcylen/2.),xlist[i]-np.ceil(srcxlen/2.):xlist[i]+np.ceil(srcxlen/2.)] += (source*secperpix*dist)
inframe[outymin:outymax,outxmin:outxmax] += (source[stampymin:stampymax,stampxmin:stampxmax]*secperpix*dist)
return inframe
def subsample(self,image,factorx,factory):
#subsample the input image
ydim,xdim = image.shape
substamp = np.zeros((ydim*factory,xdim*factorx))
for i in xrange(xdim):
for j in xrange(ydim):
#substamp[j*factory:j*(factory+1),i*factorx:i*(factorx+1)] = image[j,i]
substamp[factory*j:factory*(j+1),factorx*i:factorx*(i+1)] = image[j,i]
return substamp
def equidistantXY(self,xstart,ystart,xend,yend,dist): #,ang):
#return a list of x,y positions that are equidistant
#between the beginning and ending positions, with
#a distance of dist pixels between them
xlen = 0
ylen = 0
deltax = xend - xstart
deltay = yend - ystart
ang = np.arctan2(deltay,deltax)
dx = np.cos(ang) * dist
dy = np.sin(ang) * dist
if dx != 0.:
xs = np.arange(xstart,xend+dx/2,dx)
xlen = len(xs)
else:
#motion parallel to y axis
xs = np.array([xstart])
if dy != 0:
ys = np.arange(ystart,yend+dy/2,dy)
ylen = len(ys)
else:
#motion parallel to x asis
ys = np.array([ystart])
#make sure lengths agree
if xlen == 0:
xs = np.zeros(ylen) + xstart
if ylen == 0:
ys = np.zeros(xlen) + ystart
return xs,ys
def radecPerFrame(self,ra0,dec0,ravel,decvel,time):
#generate a list of RA,Dec locations for all
#frames
ra = ra0 + (ravel * time)
dec = dec0 + (decvel * time)
return ra,dec
def xyPerFrame(self,velocity,time,ang,x0,y0):
#rate of movement in x and y (pix/sec)
ratex = velocity * np.cos(ang)
ratey = velocity * np.sin(ang)
#x,y in each frame
xs = x0 + ratex*time
ys = y0 + ratey*time
return xs,ys
#return: ramp containing moving target. Also return the x,y position
#of the target in each frame.