diff --git a/bhmm/__init__.py b/bhmm/__init__.py index f17452a..aa2ef92 100644 --- a/bhmm/__init__.py +++ b/bhmm/__init__.py @@ -14,12 +14,12 @@ # hmms from bhmm.hmm.generic_hmm import HMM -#from bhmm.hmm.gaussian_hmm import GaussianHMM -#from bhmm.hmm.discrete_hmm import DiscreteHMM +from bhmm.hmm.gaussian_hmm import GaussianHMM +from bhmm.hmm.discrete_hmm import DiscreteHMM from bhmm.hmm.generic_sampled_hmm import SampledHMM -#from bhmm.hmm.gaussian_hmm import SampledGaussianHMM -#from bhmm.hmm.discrete_hmm import SampledDiscreteHMM +from bhmm.hmm.gaussian_hmm import SampledGaussianHMM +from bhmm.hmm.discrete_hmm import SampledDiscreteHMM # estimators from bhmm.estimators.bayesian_sampling import BayesianHMMSampler as BHMM diff --git a/examples/discrete_1d_2min/run.py b/examples/discrete_1d_2min/run.py index fc7f31f..7a169d2 100644 --- a/examples/discrete_1d_2min/run.py +++ b/examples/discrete_1d_2min/run.py @@ -26,7 +26,7 @@ observations.append(o[shift:][::lag]) # initial HMM - hmm = bhmm.estimate_hmm(observations, nstates, output_model_type='discrete') + hmm = bhmm.estimate_hmm(observations, nstates, type='discrete') its[i] = lag*hmm.timescales likelihoods[i] = hmm.likelihood diff --git a/examples/p5ab-hairpin/generate-figure.py b/examples/p5ab-hairpin/generate-figure.py index 77857ea..78d047c 100644 --- a/examples/p5ab-hairpin/generate-figure.py +++ b/examples/p5ab-hairpin/generate-figure.py @@ -50,7 +50,7 @@ def run(nstates, nsamples): # Initialize BHMM, using MLHMM model as initial model. print "Initializing BHMM and running with "+str(nsamples)+" samples." - sampler = bhmm.BayesianHMMSampler(O, nstates, initial_model=mle) + sampler = bhmm.BHMM(O, nstates, initial_model=mle) # Sample models. bhmm_models = sampler.sample(nsamples=nsamples, save_hidden_state_trajectory=False) diff --git a/examples/rnase-h-d10a/generate-figure.py b/examples/rnase-h-d10a/generate-figure.py index c266708..33b20f9 100644 --- a/examples/rnase-h-d10a/generate-figure.py +++ b/examples/rnase-h-d10a/generate-figure.py @@ -46,7 +46,7 @@ def run(nstates, nsamples): # Initialize BHMM, using MLHMM model as initial model. print "Initializing BHMM and running with "+str(nsamples)+" samples." - sampler = bhmm.BayesianHMMSampler(O, nstates, initial_model=mle) + sampler = bhmm.BHMM(O, nstates, initial_model=mle) # Sample models. bhmm_models = sampler.sample(nsamples=nsamples, save_hidden_state_trajectory=False) diff --git a/examples/synthetic-three-state-model/generate-figure.py b/examples/synthetic-three-state-model/generate-figure.py index 21cd921..3b4fb59 100644 --- a/examples/synthetic-three-state-model/generate-figure.py +++ b/examples/synthetic-three-state-model/generate-figure.py @@ -61,7 +61,7 @@ def run(nstates, nsamples): # Initialize BHMM with MLHMM model. print "Sampling models from BHMM..." - sampler = bhmm.BayesianHMMSampler(O, nstates, initial_model=mle) + sampler = bhmm.BHMM(O, nstates, initial_model=mle) bhmm_models = sampler.sample(nsamples=nsamples, save_hidden_state_trajectory=False) # Generate a sample saving a hidden state trajectory.