Skip to content

Latest commit

 

History

History
214 lines (186 loc) · 5.4 KB

plan.md

File metadata and controls

214 lines (186 loc) · 5.4 KB

CV Matcher Project Plan

Project Overview

CV Matcher is a tool designed to match job descriptions with candidate CVs/resumes using advanced text analysis and matching algorithms.

Project Structure

cv_matcher/
├── README.md           # Project documentation and setup instructions
├── Dockerfile         # Container configuration
├── requirements.txt   # Python dependencies
├── src/
│   ├── __init__.py
│   ├── main.py       # Application entry point
│   ├── api/          # API endpoints
│   ├── core/         # Core matching logic
│   ├── models/       # Data models
│   └── utils/        # Utility functions
├── tests/            # Test suite
└── docs/             # Additional documentation

Technical Stack

  • Backend: Python 3.12+
  • API Framework: FastAPI
  • Text Processing: MarkItDown
  • ML/AI: Pydantic AI
  • Docker: Containerization
  • Testing: pytest

Core Features

  1. CV Processing

    • PDF/DOCX parsing
    • Text extraction
    • Structure recognition
    • Skills extraction
    • Experience mapping
  2. Job Description Processing

    • Requirements extraction
    • Skills identification
    • Experience level detection
    • Must-have vs. nice-to-have classification
  3. Matching Engine

    • Skills matching
    • Experience matching
    • Education matching
    • Scoring system
    • Ranking algorithm
  4. API Endpoints

    • Upload CV
    • Submit job description
    • Get matching results
    • Manage candidates
    • Manage job postings

Project Class Diagram

classDiagram
    class AIClient {
        -_model
        -_model_settings
        -_cache_dir
        +run(prompt, max_tokens, system_prompt, result_type, use_cache)
    }

    class ResumeAnalysisService {
        -client: AIClient
        -analyzer: JobAnalyzer
        -markitdown: MarkItDown
        -console: Console
        +process_files(resume_path, job_desc_path)
        +analyze_resume(resume_text, job_description)
        +show_analysis_result(result)
    }

    class JobAnalyzer {
        -client: AIClient
        -_resume_processor: ResumeProcessor
        -_criteria_evaluator: CriteriaEvaluator
        -_red_flag_analyzer: RedFlagAnalyzer
        +unify_resume(resume_text)
        +extract_job_requirements(job_description)
        +match_resume(resume_text, job_description, job_requirements)
    }

    class ResumeProcessor {
        -client: AIClient
        +unify_resume(resume_text)
        +get_website(resume_text)
    }

    class CriteriaEvaluator {
        -client: AIClient
        +evaluate_criterion(criterion, resume_text, job_requirements)
    }

    class RedFlagAnalyzer {
        +analyze(criteria)
    }

    class DetailedMatchResult {
        +overall_score: int
        +criteria_scores: List[ScoringCriterion]
        +match_reasons: str
        +red_flags: Dict[str, List[str]]
        +website: Optional[str]
    }

    class ScoringCriterion {
        +name: str
        +key: str
        +weight: int
        +description: str
        +factors: List[str]
        +score: Optional[int]
    }

    class JobRequirements {
        +required_experience_years: int
        +required_education_level: str
        +required_skills: List[str]
        +optional_skills: List[str]
        +certifications_preferred: List[str]
        +soft_skills: List[str]
        +keywords_to_match: List[str]
        +location: Location
        +emphasis: Emphasis
    }

    ResumeAnalysisService --> AIClient
    ResumeAnalysisService --> JobAnalyzer
    JobAnalyzer --> ResumeProcessor
    JobAnalyzer --> CriteriaEvaluator
    JobAnalyzer --> RedFlagAnalyzer
    JobAnalyzer --> AIClient
    ResumeProcessor --> AIClient
    CriteriaEvaluator --> AIClient
    JobAnalyzer ..> DetailedMatchResult
    JobAnalyzer ..> JobRequirements
    DetailedMatchResult --> ScoringCriterion
Loading

Implementation Plan

Phase 1: Setup and Basic Structure

  1. Initialize project structure
  2. Set up development environment
  3. Configure Docker
  4. Implement basic API structure
  5. Set up database models

Phase 2: Core Processing

  1. Implement CV parsing
  2. Implement job description parsing
  3. Create basic text processing utilities
  4. Set up initial matching logic

Phase 3: Advanced Features

  1. Implement ML-based matching
  2. Add scoring system
  3. Create ranking algorithm
  4. Implement advanced filters

Phase 4: API and Integration

  1. Complete REST API endpoints
  2. Add authentication
  3. Implement rate limiting
  4. Add API documentation

Phase 5: Testing and Deployment

  1. Write unit tests
  2. Add integration tests
  3. Set up CI/CD
  4. Prepare production deployment

Security Considerations

  • Implement JWT authentication
  • Secure file uploads
  • Rate limiting
  • Input validation
  • Data encryption
  • CORS configuration
  • Environment variables for sensitive data

Monitoring and Logging

  • Request logging
  • Error tracking
  • Performance metrics
  • API usage statistics
  • System health monitoring

Development Guidelines

  1. Follow PEP 8 style guide
  2. Write comprehensive docstrings
  3. Maintain test coverage >80%
  4. Use type hints
  5. Regular code reviews
  6. Version control best practices

Deployment Strategy

  1. Docker-based deployment
  2. Scalable architecture
  3. Load balancing
  4. Monitoring setup
  5. CI/CD pipeline

Future Enhancements

  1. AI-powered matching improvements
  2. Resume parsing accuracy
  3. Additional file format support
  4. Advanced analytics