-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchap2-firstorder.tex
1752 lines (1224 loc) · 44.1 KB
/
chap2-firstorder.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Chapter 2 - First-Order ODEs
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{topic}[First-Order Differential Equations]
\vfil
\begin{center}
\begin{minipage}{200pt}
\includegraphics*[width=200pt]{images/chap2-xkcd.png}
\hfill {\footnotesize (image from \href{https://www.xkcd.com/793/}{xkcd - comic \#793})}
\end{minipage}
\end{center}
\end{topic}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MODULE - Introduction
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{module}{Introduction to Differential Equations}
% \Title{Definition}
\label{ODE:intro}
% \Heading{Textbook}
% \Heading{Objectives}
% \begin{itemize}
% \item Bla bla bla
% \end{itemize}
%
% \Heading{Motivation}
\begin{lesson}
\Title{Introduction to Differential Equations}
% \Heading{Objectives}
% \begin{itemize}
% \item The second step in Mathematical modelling is to construct a representation of how the team will be attempting to solve the problem.
% \item Create a mind map of the problem. This is a structured way to brainstorm possible solutions and their requirements.
% \end{itemize}
%
% \Heading{Motivation}
%
%\begin{annotation}
% \begin{goals}
% \Goal{Extra Reading}
% Math Modelling: Getting started and getting solutions, Bliss-Fowler-Galluzzo
%
% \hfill \qrcode{https://m3challenge.siam.org/resources/modeling-handbook}
% \end{goals}
%\end{annotation}
% \Heading{Extra Reading} \href{https://m3challenge.siam.org/resources/modeling-handbook}{Math Modelling: Getting started and getting solutions, Bliss-Fowler-Galluzzo}
%
\end{lesson}
\input{modules/module07-intro.tex}
\input{modules/module07-intro-noexercises.tex}
\end{module}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MODULE - Solutions
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{module}{Solutions of Differential Equations}
%\Title{Solutions}
\label{ODE:solutions}
\input{modules/module08-sols.tex}
\input{modules/module08-sols-exercises.tex}
\end{module}
\begin{lesson}
\Title{Solutions of Differential Equations}
\Heading{Textbook}
\begin{itemize}
\item Modules 7, 8
\end{itemize}
\Heading{Objectives}
\begin{itemize}
\item Identifying the order of a differential equation
\item Identifying a linear vs nonlinear differential equation
\item Knowing how to check if a function is a solution of a differential equation
\end{itemize}
\Heading{Motivation}
This is an introduction to differential equations.
Students have different levels of experience with differential equations. We want to establish a common notation.
\begin{annotation}
\begin{goals}
\Goal{Using pre-class ODEs.}
\begin{itemize}
\item At the start of class, put about 8 student ODEs on the board
\item Get students to identify them: order + linearity
\item Get some info about the ODEs to the whole class
\end{itemize}
\end{goals}
\end{annotation}
\Heading{Preparation for Class}
\begin{itemize}
\item Students should bring an ODE of their choice to class with some information about it
\item Read textbook modules.
\end{itemize}
\Heading{Tutorials and Projects}
\begin{itemize}
\item Project \ref{proj:fishery}: \fisherytitle
\end{itemize}
\end{lesson}
%\newpage
\begin{annotation}
\begin{goals}
\Goal{Without solving.}
\begin{itemize}
\item Students should try to answer this question without solving the differential equation.
\item Check properties of the ODE:
\begin{itemize}
\item What does $x^2-1=0$ mean for the solution?
\item When is $y'>0$? What does that mean for the solution?
\item When is $y'<0$? What does that mean for the solution?
\end{itemize}
\end{itemize}
\end{goals}
\end{annotation}
\question
Which of these shows solutions of $y' = (x-1)(x+1) = x^2 - 1$ ?
\newlength{\len}
%\setlength{\len}{120pt}
%\begin{tabular}{ccc}
%\includegraphics[width=\len]{images/module8-figs-6-small.png}
% & \includegraphics[width=\len]{images/module8-figs-3-small.png}
% & \includegraphics[width=\len, page=2]{images/module8-figs-2-small.png} \\
%A & B & C \\[15pt]
%%
%\includegraphics[width=\len]{images/module8-figs-1-small.png}
% & \includegraphics[width=\len]{images/module8-figs-5-small.png}
% & \includegraphics[width=\len]{images/module8-figs-4-small.png} \\
%D & E & F \\
%\end{tabular}
\def\modeightA{
\begin{tikzpicture}[scale=0.65,yscale=0.8]
\begin{scope}
\clip (-3,-3) rectangle (3,3);
\foreach \k in {-9,-7, ..., 31} {
\draw[samples=50,domain=-3:3,variable=\x,color=gray!80!black] plot ({\x},{(\k-3*(\x*\x))/2});
}
\end{scope}
\draw[thick] (-3,-3) -- (-3,3);
\draw[thick] (-3,-3) -- (3,-3);
\foreach \k in {-3,-2, ..., 3} {
\draw ({\k,-3}) node[below] {\tiny $\k$};
\draw ({-3,\k}) node[left] {\tiny $\k$};
}
\end{tikzpicture}
}
\def\modeightB{
\begin{tikzpicture}[scale=0.65,yscale=0.8]
\begin{scope}
\clip (-3,-3) rectangle (3,3);
\foreach \k in {-9,-7, ..., 39} {
\draw[samples=50,domain=-3:3,variable=\x,color=gray!80!black] plot ({\x},{((\x*\x*\x)/3-(\x*\x)+\k/2)});
}
\end{scope}
\draw[thick] (-3,-3) -- (-3,3);
\draw[thick] (-3,-3) -- (3,-3);
\foreach \k in {-3,-2, ..., 3} {
\draw ({\k,-3}) node[below] {\tiny $\k$};
\draw ({-3,\k}) node[left] {\tiny $\k$};
}
\end{tikzpicture}
}
\def\modeightC{
\begin{tikzpicture}[scale=0.65,yscale=0.8]
\begin{scope}
\clip (-3,-3) rectangle (3,3);
\foreach \k in {-15,-13, ..., 29} {
\draw[samples=50,domain=-3:3,variable=\x,color=gray!80!black] plot ({\x},{-(((\x+1)*(\x+1)*(\x+1))/3-((\x+1)*(\x+1))+\k/2)});
}
\end{scope}
\draw[thick] (-3,-3) -- (-3,3);
\draw[thick] (-3,-3) -- (3,-3);
\foreach \k in {-3,-2, ..., 3} {
\draw ({\k,-3}) node[below] {\tiny $\k$};
\draw ({-3,\k}) node[left] {\tiny $\k$};
}
\end{tikzpicture}
}
\def\modeightD{
\begin{tikzpicture}[scale=0.65,yscale=0.8]
\begin{scope}
\clip (-3,-3) rectangle (3,3);
\foreach \k in {-15,-13, ..., 29} {
\draw[samples=50,domain=-3:3,variable=\x,color=gray!80!black] plot ({\x},{(((\x+1)*(\x+1)*(\x+1))/3-((\x+1)*(\x+1))+\k/2)});
}
\end{scope}
\draw[thick] (-3,-3) -- (-3,3);
\draw[thick] (-3,-3) -- (3,-3);
\foreach \k in {-3,-2, ..., 3} {
\draw ({\k,-3}) node[below] {\tiny $\k$};
\draw ({-3,\k}) node[left] {\tiny $\k$};
}
\end{tikzpicture}
}
\def\modeightE{
\begin{tikzpicture}[scale=0.65,yscale=0.8]
\begin{scope}
\clip (-3,-3) rectangle (3,3);
\foreach \k in {-9,-7, ..., 31} {
\draw[samples=50,domain=-3:3,variable=\x,color=gray!80!black] plot ({\x},{-(\k-3*(\x*\x))/2});
}
\end{scope}
\draw[thick] (-3,-3) -- (-3,3);
\draw[thick] (-3,-3) -- (3,-3);
\foreach \k in {-3,-2, ..., 3} {
\draw ({\k,-3}) node[below] {\tiny $\k$};
\draw ({-3,\k}) node[left] {\tiny $\k$};
}
\end{tikzpicture}
}
\def\modeightF{
\begin{tikzpicture}[scale=0.65,yscale=0.8]
\begin{scope}
\clip (-3,-3) rectangle (3,3);
\foreach \k in {-9,-7, ..., 39} {
\draw[samples=50,domain=-3:3,variable=\x,color=gray!80!black] plot ({\x},{(-(\x*\x*\x)/3+(\x*\x)-\k/2)});
}
\end{scope}
\draw[thick] (-3,-3) -- (-3,3);
\draw[thick] (-3,-3) -- (3,-3);
\foreach \k in {-3,-2, ..., 3} {
\draw ({\k,-3}) node[below] {\tiny $\k$};
\draw ({-3,\k}) node[left] {\tiny $\k$};
}
\end{tikzpicture}
}
\begin{instructoronly}
\hspace{-1cm}
\end{instructoronly}
\begin{tabular}{ccc}
\modeightA
& \modeightB
& \modeightC \\
A & B & C \\[15pt]
%
\modeightD
& \modeightE
& \modeightF \\
D & E & F \\
\end{tabular}
\begin{annotation}
\begin{goals}
Get students to figure out this core exercise in two different ways:
\begin{itemize}
\item by solving the ODE
\item without solving the ODE
\end{itemize}
\end{goals}
\end{annotation}
\bookonlynewpage
\begin{annotation}
\begin{goals}
Quick exercise
\end{goals}
\end{annotation}
\question
We seek a first-order ordinary differential equation
\quad $y' = f(x)$ \quad
whose solutions satisfy
$$
\begin{cases}
y(x) \mbox{ is increasing if } x<2 \\
y(x) \mbox{ is decreasing if } 2 < x < 4 \\
y(x) \mbox{ is increasing if } x > 4
\end{cases}
$$
%
Write down or graph a function $f(x)$ that would produce such solutions.
\bookonlynewpage
\begin{annotation}
\begin{goals}
\Goal{Stronger students.}
The 5$^{\rm th}$ part is for stronger students to think about while they wait for the others to finish.
Will be addressed later in module 13 (Properties of solutions). %\ref{ODE:properties}
They can see that:
\begin{itemize}
\item If $y(t_0)>0$, then $y(t)>0$ for $t>t_0$
\item If $y(t_0)<0$, then
\begin{tikzpicture}
\draw[thick,-{\seta}] (-0.25,0) -- (3.5,0) node[above] {\small $t$};
\draw[thick,-{\seta}] (0,-2) -- (0,2) node[left] {\small $y$};
\draw[samples=20, ultra thick,domain=-1.25:1.25,smooth,variable=\x,cyan] plot ({\x+1.5},{\x*\x*\x});
\draw (3,1) node[right,cyan] {\Huge ?};
\end{tikzpicture}
\end{itemize}
\end{goals}
\end{annotation}
\question
Consider the ODE \quad $y'(t) = \big(y(t)\big)^2$ \quad .
Which of the following is true?
\begin{parts}
\item $y(t)$ must always be decreasing
\item $y(t)$ must always be increasing \\[5pt]
\item $y(t)$ must always be positive
\item $y(t)$ must always be negative \\[5pt]
\item $y(t)$ must never change sign.
\end{parts}
\bookonlynewpage
\begin{annotation}
\begin{goals}
Similar to some practice problems.
Skip if the other exercises take too long.
\end{goals}
\end{annotation}
\question Consider the differential equation $2xy'=y$.
\begin{parts}
\item Check that the curves of the form $y^2 + C x = 0$ satisfy the differential equation.
\item Sketch one solution of the differential equation.
\item Sketch all the integral curves for the differential equation.
\item What is the difference between a solution passing through the point $(1,-1)$ and an integral curve passing through the same point?
\end{parts}
\standardonlynewpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MODULE - Slope Fields
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{module}{Slope Fields}
%\Title{Slope Fields}
\label{ODE:slopefields}
\input{modules/module09-slopes.tex}
\input{modules/module09-slopes-exercises.tex}
\end{module}
\begin{lesson}
\Title{Slope Fields}
\Heading{Textbook}
\begin{itemize}
\item Module 9
\end{itemize}
\Heading{Objectives}
\begin{itemize}
\item Sketch a slope field
\item Use technology to create a slope field: WolframAlpha, Desmos, Geogebra, etc.
\item Interpret a slope field
\item Deduce properties of slope field from the ODE
\item Deduce properties of solution from slope field
\end{itemize}
\Heading{Motivation}
ODEs are often difficult to solve, so we need tools to be able to interpret their solutions and deduce properties without having to solve them.
Slope fields are such a tool.
Slope fields are not meant to be sketched by hand, so they shouldn't be asked to do that, except at the beginning to learn how they are sketched so they can understand them better.
Slope fields should be used to help interpret solutions of ODEs.
\Heading{Preparation for Class}
\begin{itemize}
\item Read textbook
\item Watch first video (second is optional)
\item Solve the core exercise \ref{slopefields:preclass}
\end{itemize}
\Heading{Tutorials and Projects}
There is no project that targets slope fields directly.
\end{lesson}
\begin{annotation}
\begin{goals}
\Goal{Pre-Class exercise}
In class, quickly solve it.
\end{goals}
\end{annotation}
\question \label{slopefields:preclass}
Consider the slope field from the first video of the module.
\begin{minipage}{.75\textwidth}
\begin{parts}
\item If $y(0)=5$, then estimate $y(-7)$.
\item If $y(0)=a$, then $y(x)>0$ for all $x>0$. For which values of $a$ is this statement true?
\end{parts}
\end{minipage}
\hfill
\begin{minipage}{125pt}
\includegraphics*[width=125pt]{images/module9-preclass.png}
\end{minipage}
\bookonlynewpage
%\newpage
\question
\begin{minipage}{.7\textwidth}
A catapult throws a projectile into the air and we track the height (in metres) of the projectile from the ground as a function $y(t)$, where $t$ is the time (in seconds) that elapsed since the object was launched from the catapult. \\
Then, the slope fields for $y(t)$ and $y'(t)$ are shown below:
\end{minipage}\hfill
\begin{minipage}{100pt}
\includegraphics*[width=100pt]{images/module9-catapult.pdf}
\end{minipage}
\setlength{\len}{200pt}
\begin{tabular}{cc}
\includegraphics*[height=\len]{images/module9-y.png}
& \includegraphics*[height=\len]{images/module9-yprime.png} \\
Slope field for $y(t)$
& Slope field for $y'(t)$
\end{tabular}
\begin{annotation}
\begin{goals}
\begin{itemize}
\item Students should think about the initial conditions.
What is a possible value for $y(0)$? What is a possible value for $y'(0)$? \\
\item What does the second slope field tell us? The equilibrium in the slope field for $y'(t)$ is called \emph{terminal velocity}.
\item Sketch a possible solution again, but for $t\in[0,30]$.
\end{itemize}
\end{goals}
\end{annotation}
\hfill {\footnotesize(These slope fields were created using WolframAlpha)} \\
\begin{parts}
\item On the slope field, sketch a \emph{possible} solution.
\item Consider the graph of $y(t)$. Does it form a parabola? Justify your answer.
\end{parts}
\newpage
%\bookonlynewpage
\begin{annotation}
\begin{goals}
\Goal{Symmetry.}
\begin{itemize}
\item The goal is not to be very accurate, but to capture the symmetry of each of these slope fields.
\item Which property of the slope field allowed you to sketch it more quickly?
\end{itemize}
\end{goals}
\end{annotation}
\question Sketch the slope field for the following differential equations.
\begin{parts}
\item $y'=x$
\begin{tikzpicture}[xscale=0.75,yscale=0.75]
\draw[thick,-{\seta}] (-5,0) -- (5.5,0) node[above] {\small $x$};
\draw[thick,-{\seta}] (0,-5) -- (0,5.5) node[left] {\small $y$};
\draw[] (1,0) node[below] {\tiny 1};
\draw[] (0,1) node[left] {\tiny 1};
\draw[step=1,lightgray,thin] (-5,-5) grid (5,5);
\end{tikzpicture}
\begin{bookonly}
\vfil
\end{bookonly}
\begin{slidesonly}
\newpage
\questionagain
\vspace{0.75cm}
\end{slidesonly}
\item $y'=y^2$
\begin{tikzpicture}[xscale=0.75,yscale=0.75]
\draw[thick,-{\seta}] (-5,0) -- (5.5,0) node[above] {\small $x$};
\draw[thick,-{\seta}] (0,-5) -- (0,5.5) node[left] {\small $y$};
\draw[] (1,0) node[below] {\tiny 1};
\draw[] (0,1) node[left] {\tiny 1};
\draw[step=1,lightgray,thin] (-5,-5) grid (5,5);
\end{tikzpicture}
\end{parts}
\newpage
%\bookonlynewpage
\begin{annotation}
\begin{goals}
Students should be able to justify their choices .
\end{goals}
\end{annotation}
\question Consider the following slope fields:
\setlength{\len}{150pt}
\begin{tabular}{ccc}
\includegraphics*[height=\len]{images/module9-graph1}
& \includegraphics*[height=\len]{images/module9-graph2}
& \includegraphics*[height=\len]{images/module9-graph3} \\
(A) & (B) & (C) \\[10pt]
\includegraphics*[height=\len]{images/module9-graph4}
& \includegraphics*[height=\len]{images/module9-graph5}
& \includegraphics*[height=\len]{images/module9-graph6} \\
(D) & (E) & (F)
\end{tabular}
\begin{notslides}
\hfill {\footnotesize(These slope fields were created using WolframAlpha)} \\
\end{notslides}
\begin{parts}
\item Which slope field(s) corresponds to a differential equation of the form
\qquad $y'=f(x)$ \qquad ?
\item Which slope field(s) corresponds to a differential equation of the form
\qquad $y'=g(y)$ \qquad ?
\item Which slope field(s) corresponds to a differential equation of the form
\qquad $y'=h(x+y)$ \qquad ?
\item Which slope field(s) corresponds to a differential equation of the form
\qquad $y'=\kappa(x-y)$ \qquad ?
\item Which slope field(s) corresponds to a differential equation of the form
\qquad $y'=1+\big( \ell(x,y) \big)^2$ \qquad ?
\item Which slope field(s) corresponds to a differential equation of the form
\qquad $y'=1-\big( m(x,y) \big)^2$ \qquad ?
\end{parts}
\standardonlynewpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Numerical Methods
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MODULE - Numerical Methods
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{module}{Approximating Solutions}
%\Title{Slope Fields}
\label{ODE:approximation}
\input{modules/module10-approximations.tex}
\input{modules/module10-approximations-exercises.tex}
\end{module}
\begin{lesson}
\Title{Approximating Solutions}
\Heading{Textbook}
\begin{itemize}
\item Module 10
\end{itemize}
\Heading{Objectives}
\begin{itemize}
\item Know the idea of Euler's method
\item Use Euler's method
\item Be aware of the limitations of Euler's method
\item Deduce some properties of Euler's method
\end{itemize}
\Heading{Motivation}
After sketching slope fields and observing that they can be used to get an idea of the solution, the idea to use slope fields to rigorously define an approximation of the solution should come naturally.
Euler's method is just that approximation method.
This is probably one of the most important tools for an Engineer or a Physicist studying Differential equations, since the ODEs that often arise naturally from real problems are too complicated to solve rigorously and approximating the solution might be the only way.
\Heading{Preparation for Class}
\begin{itemize}
\item Read textbook
\item Watch first video (second is optional -- algebraic approach of approximating the derivative)
\item Solve the core exercise \ref{approx:preclass}
\end{itemize}
\Heading{Tutorials and Projects}
\begin{itemize}
% \item Project \ref{proj:fishery}: \fisherytitle
\item Project \ref{proj:pursuit}: \pursuittitle
\item Project \ref{proj:epidemic}: \epidemictitle
\item Project \ref{proj:lotkavolterra}: \lotkavolterratitle
\end{itemize}
\end{lesson}
%\newpage
\begin{annotation}
\begin{goals}
\Goal{Pre-class exercise}
In class, quickly solve it. \\
\url{https://www.desmos.com/calculator/ebfn5vpudr}
\begin{center}
\begin{tabular}{c|c}
$\Delta x$ & Error \\ \hline
% 10&10.4342 \\
% 5&9.9007 \\
% 4&6.7738 \\
2.5&3.4552 \\
2&2.7050 \\
1.67&2.2269 \\
1.43&1.8937 \\
1.25&1.6475 \\
1.11&1.4581 \\
1&1.3078 \\
0.5&0.6439 \\
0.25&0.3193 \\
\end{tabular}
\includegraphics*[width=100pt]{images/module10-euler-error.pdf}
\end{center}
\begin{itemize}
\item Linear with $\Delta x$: \quad $ E \approx C \Delta x$.
\end{itemize}
\end{goals}
\end{annotation}
\question \label{approx:preclass}
Consider the initial-value problem
$$
\begin{cases}
y' = -\sin(x)+\frac{y}{20} \\
y(-10)=2
\end{cases}
$$
The solution satisfies $y(10)=\frac{20\sin(10)+400\cos(10)-2e(-401-10\sin(10)+200\cos(10))}{401} \approx 6.7738406\ldots$.
%y=\frac{20\sin(x)+400\cos(x)-2e^{\frac{x+10}{20}}(-401-10\sin(10)+200\cos(10))}{401}
\begin{parts}
\item Using some software, approximate the solution at $x=10$ for different values of $\Delta x$.
\item Calculate the error between the solution and the approximation at $x=10$ for the different values of $\Delta x$.
\item Plot the error. Is it decreasing as $\Delta x$ decreases? Does it decrease linearly / quadratically / cubicly as $\Delta x$ decreases?
\end{parts}
\bookonlynewpage
\begin{annotation}
\begin{goals}
\begin{itemize}
\item The goal is to have student's recognize that the Euler approximation ``curves slower'' than the actual solution.
\item Students can explain in words why that is the case using the way the approximations are generated.\\
\item For .2 and .4:
\begin{itemize}%enumerate}[label=(\alph*)]
\item If students learned how to solve ODEs before, then fine!
\item If students didn't learn, then tell them to use WolframAlpha: \href{http://www.wolframalpha.com/input/?i=solve+y'=y-2,y(0)=3}{\tt solve y'=y-2, y(0)=3}
% \item If students didn't learn, then ask students:
% \begin{itemize}
% \item From the approximation, what kind of function does the approximation look like? (exponential)
% \item Exponentials pass through $(0,1)$, so this looks like an exponential moved up.
% \item Try $y=a e^{bt}+c$ and find $a,b,c$.
% \end{itemize}
\end{itemize}%enumerate}
\end{itemize}
\end{goals}
\end{annotation}
\question
Consider the differential equation
$$ y' = y - 2 .$$
\begin{parts}
\item Use Euler's Method to find an approximation of the solution of this differential equation that passes through the point $(0,3)$.
\item Find the solution of the differential equation with the same initial condition.
\item Use Euler's Method to find an approximation of the solution of this differential equation that passes through the point $(0,1)$.
\item Find the solution of the differential equation with the same initial condition.
\item Compare the approximations with the actual solutions. Is there a property of the Euler's Method that you can infer?
\item Explain in words why the Method satisfies that property.
\end{parts}
\bookonlynewpage
\begin{annotation}
\begin{goals}
\Goal{Only if there is time.}
\begin{itemize}
\item The question is purposefully ambiguous.
What do we mean by approximated perfectly?
\item Ex: The IVP $y'=$ sign$(t)$ (assuming sign$(0)=1$) with $y(-5)=5$ has solution $y = |t|$ and it is captured with Euler's method if $\Delta t=\frac5k$ for any $k\in\mathbb{N}$. \\
\item Once students discuss, they'll find ODE's of the form $y'= c$ for any constant.
\item Prompt them to find other types. Show them the example above only after they tried for a bit.
Then, let them revise their Conjecture. \\
\item Ex 2: $y'=f(y+t)$ with $y(0)=0$ and $f(z) = \lfloor z \rfloor$ is approximated perfectly if $\Delta t = 1$, but not if $\Delta t$ takes any other value.
\end{itemize}
\end{goals}
\end{annotation}
\question
Which differential equations will be approximated perfectly using Euler's Method?
%
%\bookonlynewpage
%
%\question
% Consider the initial-value problem
% $$
% \begin{cases}
% y' = y \\
% y(0)=1
% \end{cases}
% $$
%
% We want to study how the approximation and the solution compare.
% The solution at the point $x=1$ is $y(1)=e$.
%
% Consider $\Delta x$ and $x_k = k \Delta x$.
% Let $y_k \approx y(x_k)$ be an approximation of the solution at $x=x_k$.
%\begin{parts}
% \item What is the approximation of the solution at $x=1$? Your solution should depend on $\Delta x$.
% \item
%\end{parts}
%
%
%\begin{align*}
% y_{k+1} &=(1+\Delta x)y_k \\
% y_k &= (1+\Delta x)^k \\
% y(1) \approx y_N &= (1+\Delta x)^N = (1+\Delta x)^{\frac{1}{\Delta x}} \\
% \\
%
%\end{align*}
%\bookonlynewpage
\standardonlynewpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Modelling with ODEs
\begin{module}{Modelling with Differential Equations}
%\Title{Slope Fields}
\label{ODE:model}
\input{modules/module11-model-odes.tex}
\input{modules/module11-model-odes-exercises.tex}
\end{module}
\begin{lesson}
\Title{Modelling with Differential Equations I}
\Heading{Textbook}
\begin{itemize}
\item Module 11
\end{itemize}
\Heading{Objectives}
\begin{itemize}
\item Start modelling physical quantities
\item Follow the procedure from chapter 1 when creating a model
\end{itemize}
\Heading{Motivation}
This is one of the main goals of this course.
Students should be given the opportunity to create models in class. They should be encouraged to follow the procedure from chapter 1, as it will improve their models.
\Heading{Preparation for Class}
\begin{itemize}
\item Read textbook
\item Read the core exercise \ref{pendulum} and solve steps 1 (define problem) and 2 (create a mind map)
\end{itemize}
\Heading{Tutorials and Projects}
\begin{itemize}
\item Project \ref{proj:xray}: \xraytitle
\item Project \ref{proj:pursuit}: \pursuittitle
\item Project \ref{proj:epidemic}: \epidemictitle
\item Project \ref{proj:lotkavolterra}: \lotkavolterratitle
\end{itemize}
\end{lesson}
%\newpage
\begin{annotation}
\begin{goals}
Students will mostly likely identify the goal as finding the position of the ball $\vec{r}(t) = \big( x(t) , y(t) \big)$. That's fine!
Later, in Step 3, try to guide the students to recognize the following:
\begin{itemize}
\item Rope is massless (negligible)
\item Rope doesn't bend (negligible)
\item So can assume that the rope is rigid. How does that affect the position of the ball?
\item No friction (negligible)
\item \textbf{Important:} Students always focus on string tension. One can consider it, but it all cancels out. It's one of the exercises of the module (above). For the lecture, don't consider tension.
\end{itemize}
Then on Step 4, guide students to recognize that they actually only need to find a model for the angle, because the position of the ball really only depends on the angle $\theta(t): \vec{r}\big(\theta(t)\big)$ \\