-
Notifications
You must be signed in to change notification settings - Fork 2
/
CS3243_P1_22_3.py
298 lines (243 loc) · 9.26 KB
/
CS3243_P1_22_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import sys
import time
import copy
from random import shuffle
import heapq
## A* STAR ALGORITHM WITH MANHATTAN DISTANCE HEURISTIC ##
class Node:
def __eq__(self, other):
return self.init_state == other.init_state
def __lt__(self, other):
return self.cost < other.cost
def __hash__(self):
hashable = tuple(map(tuple, self.init_state))
return hash(hashable)
def __init__(self, init_state, goal_state):
self.init_state = init_state
self.goal_state = goal_state
self.zero_x_coord = -1
self.zero_y_coord = -1
self.parentPuzzle = None
self.action = None
self.cost = 0
def setParentPuzzle(self, parPuzzle):
self.parentPuzzle = parPuzzle
def isGoalState(self):
return self.init_state == self.goal_state
def setParams(self, blank_x, blank_y, action_done, parent_puzzle, new_cost):
self.zero_x_coord = blank_x
self.zero_y_coord = blank_y
self.parentPuzzle = parent_puzzle
self.action = action_done
self.cost = new_cost
class Puzzle(object):
actions = []
goalActions = []
visited = 0
added_to_frontier = 0
popped = 0 # reflective of time complexity
max_frontier = 0 # reflective of space complexity
def __init__(self, init_state, goal_state):
self.init_state = init_state
self.goal_state = goal_state
self.actions = list()
self.parentPuzzle = None
self.action = None
self.cost = 0
def solve(self):
VISITED = set()
FRONTIER = []
source_node = Node(self.init_state, self.goal_state)
zero_x, zero_y = Puzzle.findZeroDimension(source_node)
source_node.setParams(zero_x, zero_y, None, None, 0)
if Puzzle.isSolvable(source_node):
heapq.heappush(
FRONTIER, (Puzzle.f_score(source_node), source_node))
while len(FRONTIER) != 0:
curr = heapq.heappop(FRONTIER)
currNode = curr[1]
Puzzle.popped += 1
VISITED.add(currNode)
if currNode.isGoalState():
return recursiveBacktrack(currNode)
else:
possible_actions = self.findPossibleActions(
currNode.zero_x_coord, currNode.zero_y_coord)
shuffle(possible_actions)
for next_action in possible_actions:
child_state, child_x, child_y = self.apply_action_to_state(
currNode.init_state, next_action, currNode.zero_x_coord, currNode.zero_y_coord)
child_node = Node(child_state, self.goal_state)
if child_node not in VISITED:
child_node.setParams(
child_x, child_y, next_action, currNode, currNode.cost + 1)
fvalue = Puzzle.f_score(child_node)
heapq.heappush(FRONTIER, (fvalue, child_node))
Puzzle.added_to_frontier += 1
# For space complexity
if len(FRONTIER) > Puzzle.max_frontier:
Puzzle.max_frontier = len(FRONTIER)
else:
return ['UNSOLVABLE']
@staticmethod
def manhattanDistance(inputNode):
n = len(inputNode.goal_state)
distSum = 0
for x in range(0, n):
for y in range(0, n):
currentValue = inputNode.init_state[x][y]
if (currentValue != 0):
targetX = int((currentValue - 1) / n)
targetY = (currentValue - 1) % n
distX = x - targetX
distY = y - targetY
distSum += abs(distX) + abs(distY)
return distSum
@staticmethod
def f_score(inputNode):
return inputNode.cost + Puzzle.manhattanDistance(inputNode)
def findPossibleActions(self, x, y):
max_y_row = len(self.goal_state) - 1
max_x_col = len(self.goal_state[0]) - 1
output = []
if y + 1 <= max_y_row:
output.append("DOWN")
if x + 1 <= max_x_col:
output.append("RIGHT")
if y - 1 >= 0:
output.append("UP")
if x - 1 >= 0:
output.append("LEFT")
return output
@staticmethod
def apply_action_to_state(prev_state, action, col, row):
if action is None:
return prev_state, col, row
else:
#new_arr = copy.deepcopy(prev_state)
new_arr = [x[:] for x in prev_state]
new_col = col
new_row = row
# Defines the possible movements and returns an array representing the movement
if action == "RIGHT":
new_arr[row][col] = new_arr[row][col + 1]
new_arr[row][col + 1] = 0
new_col = col + 1
elif action == "LEFT":
new_arr[row][col] = new_arr[row][col - 1]
new_arr[row][col - 1] = 0
new_col = col - 1
elif action == "UP":
new_arr[row][col] = new_arr[row - 1][col]
new_arr[row - 1][col] = 0
new_row = row - 1
elif action == "DOWN":
new_arr[row][col] = new_arr[row + 1][col]
new_arr[row + 1][col] = 0
new_row = row + 1
return new_arr, new_col, new_row
# Helper method to calculate the permutation inversions in initial state
@staticmethod
def calculateInversions(inputNode):
# Flatten array for easier computation
flat_arr = []
for i in range(0, len(inputNode.init_state)):
for j in range(0, len(inputNode.init_state)):
flat_arr.append(inputNode.init_state[i][j])
inversion_count = 0
# Loop through flat array and compare numbers in pairs
for i in range(0, len(flat_arr)):
for j in range(i + 1, len(flat_arr)):
if flat_arr[i] == 0 or flat_arr[j] == 0:
continue
elif flat_arr[i] > flat_arr[j]:
inversion_count += 1
return inversion_count
@staticmethod
def findZeroPos(inputNode):
for row in range(0, len(inputNode.init_state)):
for col in range(0, len(inputNode.init_state)):
if inputNode.init_state[row][col] == 0:
return len(inputNode.init_state) - row
@staticmethod
def findZeroDimension(inputNode):
for row in range(0, len(inputNode.init_state)):
for col in range(0, len(inputNode.init_state)):
if inputNode.init_state[row][col] == 0:
return col, row
@staticmethod
def isSolvable(inputNode):
selfLen = len(inputNode.init_state)
inversion_number = Puzzle.calculateInversions(inputNode)
if selfLen % 2 != 0:
if inversion_number % 2 == 0:
return True
else:
return False
else:
zeroPos = Puzzle.findZeroPos(inputNode)
if zeroPos % 2 == 0 and inversion_number % 2 != 0:
return True
elif zeroPos % 2 != 0 and inversion_number % 2 == 0:
return True
else:
return False
def recursiveBacktrack(goalNode):
currNode = goalNode
output = []
while(currNode.parentPuzzle is not None):
action = ""
if (currNode.action == "UP"):
action = "DOWN"
elif (currNode.action == "DOWN"):
action = "UP"
elif (currNode.action == "LEFT"):
action = "RIGHT"
else:
action = "LEFT"
output.append(action)
currNode = currNode.parentPuzzle
output.reverse()
return output
if __name__ == "__main__":
# do NOT modify below
# argv[0] represents the name of the file that is being executed
# argv[1] represents name of input file
# argv[2] represents name of destination output file
if len(sys.argv) != 3:
raise ValueError("Wrong number of arguments!")
try:
f = open(sys.argv[1], 'r')
except IOError:
raise IOError("Input file not found!")
lines = f.readlines()
# n = num rows in input file
n = len(lines)
# max_num = n to the power of 2 - 1
max_num = n ** 2 - 1
# Instantiate a 2D list of size n x n
init_state = [[0 for i in range(n)] for j in range(n)]
goal_state = [[0 for i in range(n)] for j in range(n)]
i, j = 0, 0
for line in lines:
for number in line.split(" "):
if number == '':
continue
value = int(number, base=10)
if 0 <= value <= max_num:
init_state[i][j] = value
j += 1
if j == n:
i += 1
j = 0
for i in range(1, max_num + 1):
goal_state[(i - 1) // n][(i - 1) % n] = i
goal_state[n - 1][n - 1] = 0
puzzle = Puzzle(init_state, goal_state)
tic = time.time()
ans = puzzle.solve()
toc = time.time()
print("Found solution in " + str(toc - tic) + " seconds")
with open(sys.argv[2], 'a') as f:
for answer in ans:
f.write(answer + '\n')