forked from zetta-shao/LCD12864emu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ssd1306.c
771 lines (681 loc) · 25.1 KB
/
ssd1306.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
#include "ssd1306.h"
#include <math.h>
#include <stdlib.h>
#include <string.h> // For memcpy
#if defined(SSD1306_USE_I2C)
//struct __I2C_HandleTypeDef *_SSD1306_I2C_PORT = NULL;
void ssd1306_Reset(void) { /* for I2C - do nothing */ }
// Send a byte to the command register
void ssd1306_WriteCommand(struct tSSD1306 *d, uint8_t byte) {
//HAL_I2C_Mem_Write(&SSD1306_I2C_PORT, SSD1306_I2C_ADDR, 0x00, 1, &byte, 1, HAL_MAX_DELAY);
HAL_I2C_Mem_Write(d->pD, SSD1306_I2C_ADDR, 0x00, 1, &byte, 1, HAL_MAX_DELAY);
}
// Send data
void ssd1306_WriteData(struct tSSD1306 *d, uint8_t* buffer, size_t buff_size) {
//HAL_I2C_Mem_Write(&SSD1306_I2C_PORT, SSD1306_I2C_ADDR, 0x40, 1, buffer, buff_size, HAL_MAX_DELAY);
HAL_I2C_Mem_Write(d->pD, SSD1306_I2C_ADDR, 0x40, 1, buffer, buff_size, HAL_MAX_DELAY);
}
#elif defined(SSD1306_USE_SPI)
//struct __SPI_HandleTypeDef *_SSD1306_SPI_PORT = NULL;
void ssd1306_Reset(struct tSSD1306 *d) { //Reset the OLED //CS = High (not selected)
//if(d->RST_PORT == NULL) return;
if(d->RST.pin == 65535) return;
//HAL_GPIO_WritePin(d->CS_PORT, d->cs_pin, GPIO_PIN_RESET);
swspi_setgpo(&d->CS, 0);
//HAL_GPIO_WritePin(d->RST_PORT, d->rst_pin, GPIO_PIN_RESET);
swspi_setgpo(&d->RST, 0);
//HAL_Delay(10);
swspi_delay_ms(10);
//HAL_GPIO_WritePin(d->RST_PORT, d->rst_pin, GPIO_PIN_SET);
swspi_setgpo(&d->RST, 0);
//HAL_Delay(10);
swspi_delay_ms(10);
//HAL_GPIO_WritePin(d->CS_PORT, d->cs_pin, GPIO_PIN_SET);
swspi_setgpo(&d->CS, 1);
}
// Send a byte to the command register
void ssd1306_WriteCommand(struct tSSD1306 *d, uint8_t byte) {
uint16_t tmp=0; uint8_t *pT=(uint8_t*)&tmp;
#if 0
//uint8_t pT[2];
HAL_GPIO_WritePin(d->CS_PORT, d->cs_pin, GPIO_PIN_RESET); // select OLED
if((d->flag & __OLED_3WSPI) != 0) { //must set SPI 9bit data mode first
pT[0] = byte; pT[1] = 0;
HAL_SPI_Transmit(d->pDev, pT, 1, HAL_MAX_DELAY);
} else {
HAL_GPIO_WritePin(d->DC_PORT, d->dc_pin, GPIO_PIN_RESET); // command
HAL_SPI_Transmit(d->pDev, (uint8_t *) &byte, 1, HAL_MAX_DELAY);
}
HAL_GPIO_WritePin(d->CS_PORT, d->cs_pin, GPIO_PIN_SET); // un-select OLED
#else
swspi_setgpo(&d->CS, 0); // select OLED
if((d->flag & __OLED_3WSPI) != 0) { //must set SPI 9bit data mode first
pT[0] = byte;
//HAL_SPI_Transmit(d->pDev, pT, 1, HAL_MAX_DELAY);
swspi_write(d->pDev, pT, 1);
} else {
//HAL_GPIO_WritePin(d->DC_PORT, d->dc_pin, GPIO_PIN_RESET); // command
swspi_setgpo(&d->DC, 0); // data
//HAL_SPI_Transmit(d->pDev, (uint8_t *) &byte, 1, HAL_MAX_DELAY);
swspi_write(d->pDev, &byte, 1);
}
swspi_setgpo(&d->CS, 1); // un-select OLED
#endif
}
// Send data
void ssd1306_WriteData(struct tSSD1306 *d, uint8_t* buffer, uint8_t buff_size) {
uint16_t tmp=256; uint8_t *pT=(uint8_t*)&tmp;
#if 0
//uint8_t pT[2];
HAL_GPIO_WritePin(d->CS_PORT, d->cs_pin, GPIO_PIN_RESET); // select OLED
if((d->flag & __OLED_3WSPI) != 0) { //must set SPI 9bit data mode first
for(pT[1]=1; buff_size>0; buff_size--, buffer++) {
pT[0] = *buffer;
HAL_SPI_Transmit(d->pDev, pT, 1, HAL_MAX_DELAY);
}
} else {
HAL_GPIO_WritePin(d->DC_PORT, d->dc_pin, GPIO_PIN_SET); // data
HAL_SPI_Transmit(d->pDev, buffer, buff_size, HAL_MAX_DELAY);
HAL_GPIO_WritePin(d->DC_PORT, d->dc_pin, GPIO_PIN_RESET); // command
}
HAL_GPIO_WritePin(d->CS_PORT, d->cs_pin, GPIO_PIN_SET); // un-select OLED
#else
swspi_setgpo(&d->CS, 0); // select OLED
//HAL_GPIO_WritePin(d->CS_PORT, d->cs_pin, GPIO_PIN_RESET); // select OLED
if((d->flag & __OLED_3WSPI) != 0) { //must set SPI 9bit data mode first
for(; buff_size>0; buff_size--, buffer++) {
pT[0] = *buffer;
//HAL_SPI_Transmit(d->pDev, pT, 1, HAL_MAX_DELAY);
swspi_write(d->pDev, pT, 1);
}
} else {
swspi_setgpo(&d->DC, 1); // data
//HAL_SPI_Transmit(d->pDev, buffer, buff_size, HAL_MAX_DELAY);
swspi_write(d->pDev, buffer, buff_size);
swspi_setgpo(&d->DC, 0); // command
}
swspi_setgpo(&d->CS, 1); // un-select OLED
//HAL_GPIO_WritePin(d->CS_PORT, d->cs_pin, GPIO_PIN_SET); // select OLED
#endif
}
#else
#error "You should define SSD1306_USE_SPI or SSD1306_USE_I2C macro"
#endif
// Screenbuffer
//static uint8_t SSD1306_Buffer[SSD1306_BUFFER_SIZE];
// Screen object
//static SSD1306_t SSD1306;
/* Fills the Screenbuffer with values from a given buffer of a fixed length */
SSD1306_Error_t ssd1306_FillBuffer(struct tSSD1306 *d, uint8_t* buf, uint32_t len) {
if(len > SSD1306_BUFFER_SIZE) return SSD1306_ERR;
memcpy(d->SSD1306_Buffer, buf, len);
return SSD1306_OK;
}
//void SSD1306_gpioSetCS(struct tSSD1306 *d, void* CSport, uint16_t CSpin) {
// if(CSport) { d->CS_PORT=CSport; d->cs_pin=CSpin; }
// else { d->CS_PORT=NULL; d->cs_pin=65535; }
//}
//void SSD1306_gpioSetDC(struct tSSD1306 *d, void* DCport, uint16_t DCpin) {
// if(DCport) { d->DC_PORT=DCport; d->dc_pin=DCpin; }
// else { d->DC_PORT=NULL; d->dc_pin=65535; }
//}
//void SSD1306_gpioSetRST(struct tSSD1306 *d, void* RSTport, uint16_t RSTpin ) {
// if(RSTport) { d->RST_PORT=RSTport; d->rst_pin=RSTpin; }
// else { d->RST_PORT=NULL; d->rst_pin=65535; }
//}
//void SSD1306_gpioinitSW(struct tSSD1306 *d, void* CSport, uint16_t CSpin, void* DCport, uint16_t DCpin, void* RSTport, uint16_t RSTpin) {
// SSD1306_gpioSetCS(d, CSport, CSpin);
// SSD1306_gpioSetDC(d, DCport, DCpin);
// SSD1306_gpioSetRST(d, RSTport, RSTpin);
//}
void SSD1306_gpioinit5W2(struct tSSD1306 *d, ssd1306_gpio_t *CS, ssd1306_gpio_t *DC, ssd1306_gpio_t *RST) {
d->pDev=NULL;
d->CS.port=NULL; d->CS.pin=65535;
d->DC.port=NULL; d->DC.pin=65535;
d->RST.port=NULL; d->RST.pin=65535;
d->flag = 0;
d->i2c_addr = 0x3c;
d->CurrentX = 0;
d->CurrentY = 0;
if(CS) { d->CS.port=CS->port; d->CS.pin=CS->pin; };
if(DC) { d->DC.port=DC->port; d->DC.pin=DC->pin; };
if(RST) { d->RST.port=RST->port; d->RST.pin=RST->pin; };
}
//void SSD1306_gpioinit5W(struct tSSD1306 *d, void* CSport, uint16_t CSpin, void* DCport, uint16_t DCpin, void* RSTport, uint16_t RSTpin) {
// SSD1306_gpioinitSW(d, CSport, CSpin, DCport, DCpin, RSTport, RSTpin);
//}
//void SSD1306_gpioinit4W(struct tSSD1306 *d, void* CSport, uint16_t CSpin, void* DCport, uint16_t DCpin) {
// SSD1306_gpioinitSW(d, CSport, CSpin, DCport, DCpin, NULL, 0);
//}
void SSD1306_gpioinit4W2(struct tSSD1306 *d, ssd1306_gpio_t *CS, ssd1306_gpio_t *DC) { SSD1306_gpioinit5W2(d, CS, DC, NULL); }
//void SSD1306_gpioinit3W(struct tSSD1306 *d, void* CSport, uint16_t CSpin) {
// SSD1306_gpioinitSW(d, CSport, CSpin, NULL, 0, NULL, 0);
// d->flag |= __OLED_3WSPI;
//}
void SSD1306_gpioinit3W2(struct tSSD1306 *d, ssd1306_gpio_t *CS) {
SSD1306_gpioinit5W2(d, CS, NULL, NULL);
d->flag |= __OLED_3WSPI;
}
/* Initialize the oled screen */
void SSD1306_Init(struct tSSD1306 *d, void *pvport) {
#if defined(SSD1306_USE_I2C)
d->pDev = (swi2c_t*)pvport;
#elif defined(SSD1306_USE_SPI)
d->pDev = (swspi_t*)pvport;
#endif
// Reset OLED
ssd1306_Reset(d);
// Wait for the screen to boot
HAL_Delay(100);
// Init OLED
ssd1306_SetDisplayOn(d, 0); //display off
ssd1306_WriteCommand(d, 0x20); //Set Memory Addressing Mode
ssd1306_WriteCommand(d, 0x00); // 00b,Horizontal Addressing Mode; 01b,Vertical Addressing Mode;
// 10b,Page Addressing Mode (RESET); 11b,Invalid
ssd1306_WriteCommand(d, 0xB0); //Set Page Start Address for Page Addressing Mode,0-7
#ifdef SSD1306_MIRROR_VERT
ssd1306_WriteCommand(d, 0xC0); // Mirror vertically
#else
ssd1306_WriteCommand(d, 0xC8); //Set COM Output Scan Direction
#endif
ssd1306_WriteCommand(d, 0x00); //---set low column address
ssd1306_WriteCommand(d, 0x10); //---set high column address
ssd1306_WriteCommand(d, 0x40); //--set start line address - CHECK
ssd1306_SetContrast(d, 0xFF);
#ifdef SSD1306_MIRROR_HORIZ
ssd1306_WriteCommand(d, 0xA0); // Mirror horizontally
#else
ssd1306_WriteCommand(d, 0xA1); //--set segment re-map 0 to 127 - CHECK
#endif
#ifdef SSD1306_INVERSE_COLOR
ssd1306_WriteCommand(d, 0xA7); //--set inverse color
#else
ssd1306_WriteCommand(d, 0xA6); //--set normal color
#endif
// Set multiplex ratio.
#if (SSD1306_HEIGHT == 128)
// Found in the Luma Python lib for SH1106.
ssd1306_WriteCommand(d, 0xFF);
#else
ssd1306_WriteCommand(d, 0xA8); //--set multiplex ratio(1 to 64) - CHECK
#endif
#if (SSD1306_HEIGHT == 32)
ssd1306_WriteCommand(d, 0x1F); //
#elif (SSD1306_HEIGHT >= 64)
ssd1306_WriteCommand(d, 0x3F); // Seems to work for 128px high displays too.
#else
#error "Only 32, 64, or 128 lines of height are supported!"
#endif
ssd1306_WriteCommand(d, 0xA4); //0xa4,Output follows RAM content;0xa5,Output ignores RAM content
ssd1306_WriteCommand(d, 0xD3); //-set display offset - CHECK
ssd1306_WriteCommand(d, 0x00); //-not offset
ssd1306_WriteCommand(d, 0xD5); //--set display clock divide ratio/oscillator frequency
ssd1306_WriteCommand(d, 0xF0); //--set divide ratio
ssd1306_WriteCommand(d, 0xD9); //--set pre-charge period
ssd1306_WriteCommand(d, 0x22); //
ssd1306_WriteCommand(d, 0xDA); //--set com pins hardware configuration - CHECK
#if (SSD1306_HEIGHT == 32)
ssd1306_WriteCommand(d, 0x02);
#elif (SSD1306_HEIGHT >= 64)
ssd1306_WriteCommand(d, 0x12);
#else
#error "Only 32, 64, or 128 lines of height are supported!"
#endif
ssd1306_WriteCommand(d, 0xDB); //--set vcomh
ssd1306_WriteCommand(d, 0x20); //0x20,0.77xVcc
ssd1306_WriteCommand(d, 0x8D); //--set DC-DC enable
ssd1306_WriteCommand(d, 0x14); //
ssd1306_SetDisplayOn(d, 1); //--turn on SSD1306 panel
// Clear screen
ssd1306_Fill(d, Black);
// Flush buffer to screen
ssd1306_UpdateScreen(d);
// Set default values for screen object
d->CurrentX = 0;
d->CurrentY = 0;
d->flag |= __INITED;
}
void SH1106_Init(struct tSSD1306 *d, void *pvport) {
#if defined(SSD1306_USE_I2C)
d->pDev = (swi2c_t*)pvport;
#elif defined(SSD1306_USE_SPI)
d->pDev = (swspi_t*)pvport;
#endif
//ssd1306_Reset(d); // Reset OLED
//HAL_Delay(100); // Wait for the screen to boot
ssd1306_SetDisplayOn(d, 0); // Init OLED //display off
ssd1306_WriteCommand(d, 0xB0); //Set Page Start Address for Page Addressing Mode,0-7
ssd1306_SetContrast(d, 255); //Set Contrast
#ifdef SSD1306_MIRROR_HORIZ
ssd1306_WriteCommand(d, 0xA0); // Mirror horizontally
#else
ssd1306_WriteCommand(d, 0xA1); //--set segment re-map 0 to 127 - CHECK
#endif
#ifdef SSD1306_INVERSE_COLOR
ssd1306_WriteCommand(d, 0xA7); //--set inverse color
#else
ssd1306_WriteCommand(d, 0xA6); //--set normal color
#endif
// Set multiplex ratio.
#if (SSD1306_HEIGHT == 128)
// Found in the Luma Python lib for SH1106.
ssd1306_WriteCommand(d, 0xFF);
#else
ssd1306_WriteCommand(d, 0xA8); //--set multiplex ratio(1 to 64) - CHECK
#endif
#if (SSD1306_HEIGHT == 32)
ssd1306_WriteCommand(d, 0x1F); //
#elif (SSD1306_HEIGHT >= 64)
ssd1306_WriteCommand(d, 0x3F); // Seems to work for 128px high displays too.
#else
#error "Only 32, 64, or 128 lines of height are supported!"
#endif
ssd1306_WriteCommand(d, 0xAD); //set pump mode
ssd1306_WriteCommand(d, 0x8B); //set pump on
ssd1306_WriteCommand(d, 0x32); //set pump voltage
#ifdef SSD1306_MIRROR_VERT
ssd1306_WriteCommand(d, 0xC0); // Mirror vertically
#else
ssd1306_WriteCommand(d, 0xC8); //Set COM Output Scan Direction
#endif
ssd1306_WriteCommand(d, 0xD3); //-set display offset - CHECK
ssd1306_WriteCommand(d, 0x00); //-not offset
ssd1306_WriteCommand(d, 0xD5); //--set display clock divide ratio/oscillator frequency
ssd1306_WriteCommand(d, 0x80); //--set divide ratio
ssd1306_WriteCommand(d, 0xD9); //--set pre-charge period
ssd1306_WriteCommand(d, 0x1F); //
ssd1306_WriteCommand(d, 0xDA); //--set com pins hardware configuration - CHECK
#if (SSD1306_HEIGHT == 32)
ssd1306_WriteCommand(d, 0x02);
#elif (SSD1306_HEIGHT >= 64)
ssd1306_WriteCommand(d, 0x12);
#else
#error "Only 32, 64, or 128 lines of height are supported!"
#endif
ssd1306_WriteCommand(d, 0xDB); //--set vcomh
ssd1306_WriteCommand(d, 0x40); //0x20,0.77xVcc
ssd1306_SetDisplayOn(d, 1); //--turn on SSD1306 panel
// Clear screen
ssd1306_Fill(d, Black);
// Flush buffer to screen
ssd1306_UpdateScreen(d);
// Set default values for screen object
d->CurrentX = 0;
d->CurrentY = 0;
d->flag |= __INITED;
}
/* Fill the whole screen with the given color */
void ssd1306_Fill(struct tSSD1306 *d, SSD1306_COLOR color) {
//uint32_t i;
//uint8_t c = (color == Black) ? 0x00 : 0xFF;
//for(i = 0; i < SSD1306_BUFFER_SIZE; i++) { d->SSD1306_Buffer[i] = c; }
memset(d->SSD1306_Buffer, ((color == Black) ? 0x00 : 0xFF), SSD1306_BUFFER_SIZE);
}
/* Write the screenbuffer with changed to the screen */
void ssd1306_UpdateScreen(struct tSSD1306 *d) {
// Write data to each page of RAM. Number of pages
// depends on the screen height:
//
// * 32px == 4 pages
// * 64px == 8 pages
// * 128px == 16 pages
uint8_t *pT = d->SSD1306_Buffer;
for(uint8_t i = 0; i < SSD1306_HEIGHT/8; i++) {
ssd1306_WriteCommand(d, 0xB0 + i); // Set the current RAM page address.
ssd1306_WriteCommand(d, 0x00 + SSD1306_X_OFFSET_LOWER);
ssd1306_WriteCommand(d, 0x10 + SSD1306_X_OFFSET_UPPER);
//ssd1306_WriteData(d, d->SSD1306_Buffer + (SSD1306_WIDTH*i), SSD1306_WIDTH);
ssd1306_WriteData(d, pT, SSD1306_WIDTH);
pT += SSD1306_WIDTH;
}
}
/*
* Draw one pixel in the screenbuffer
* X => X Coordinate
* Y => Y Coordinate
* color => Pixel color
*/
void ssd1306_DrawPixel(struct tSSD1306 *d, uint8_t x, uint8_t y, SSD1306_COLOR color) {
if(x >= SSD1306_WIDTH || y >= SSD1306_HEIGHT) {
// Don't write outside the buffer
return;
}
// Draw in the right color
if(color == White) {
d->SSD1306_Buffer[x + (y / 8) * SSD1306_WIDTH] |= 1 << (y % 8);
} else {
d->SSD1306_Buffer[x + (y / 8) * SSD1306_WIDTH] &= ~(1 << (y % 8));
}
}
/*
* Draw 1 char to the screen buffer
* ch => char om weg te schrijven
* Font => Font waarmee we gaan schrijven
* color => Black or White
*/
char ssd1306_WriteChar(struct tSSD1306 *d, char ch, FontDef Font, SSD1306_COLOR color) {
uint32_t i, b, j;
// Check if character is valid
if (ch < 32 || ch > 126)
return 0;
// Check remaining space on current line
if (SSD1306_WIDTH < (d->CurrentX + Font.FontWidth) ||
SSD1306_HEIGHT < (d->CurrentY + Font.FontHeight))
{
// Not enough space on current line
return 0;
}
// Use the font to write
for(i = 0; i < Font.FontHeight; i++) {
b = Font.data[(ch - 32) * Font.FontHeight + i];
for(j = 0; j < Font.FontWidth; j++) {
if((b << j) & 0x8000) {
ssd1306_DrawPixel(d, d->CurrentX + j, (d->CurrentY + i), (SSD1306_COLOR) color);
} else {
ssd1306_DrawPixel(d, d->CurrentX + j, (d->CurrentY + i), (SSD1306_COLOR)!color);
}
}
}
// The current space is now taken
d->CurrentX += Font.FontWidth;
// Return written char for validation
return ch;
}
// 1-31 => 95-125
// 32-126 => 0-94
// 127-255 => 126-254
char ssd1306_WriteChar2(struct tSSD1306 *d, uint8_t ch, FontDef Font, SSD1306_COLOR color) {
uint32_t i, j;
if(ch == 0) return 0;
if (SSD1306_WIDTH < (d->CurrentX + Font.FontWidth) ||
SSD1306_HEIGHT < (d->CurrentY + Font.FontHeight)) { return 0; }
if(Font.FontHeight <= 8) {
uint8_t *px, m;
px = ((uint8_t*)Font.data);
if(Font.bBigTable == 0)
px += (ch - 32) * Font.FontWidth;
else
px += (ch - 1) * Font.FontWidth;
for(i = 0; i < Font.FontWidth; i++) {
for(m=0x80,j=0; j<Font.FontHeight; j++, m>>=1) {
ssd1306_DrawPixel(d, d->CurrentX + i, (d->CurrentY + j), (px[i] & m) ? color : !color);
}
}
} else {
uint16_t *px, m;
if (ch < 32 || ch > 126) return 0;
px = (uint16_t*)Font.data + ((ch-32)*Font.FontHeight);
for(i = 0; i < Font.FontHeight; i++) {
for(m=0x8000,j=0; j<Font.FontWidth; j++, m>>=1) {
ssd1306_DrawPixel(d, d->CurrentX + j, (d->CurrentY + i), (px[i] & m) ? color : !color);
}
}
}
d->CurrentX += Font.FontWidth;
return ch;
}
/* Write full string to screenbuffer */
char ssd1306_WriteString(struct tSSD1306 *d, char* str, FontDef Font, SSD1306_COLOR color) {
while (*str) {
if (ssd1306_WriteChar2(d, *(uint8_t*)str, Font, color) != *str) {
// Char could not be written
return *str;
}
str++;
}
// Everything ok
return *str;
}
/* Position the cursor */
void ssd1306_SetCursor(struct tSSD1306 *d, uint8_t x, uint8_t y) {
d->CurrentX = x;
d->CurrentY = y;
}
/* Draw line by Bresenhem's algorithm */
void ssd1306_Line(struct tSSD1306 *d, uint8_t x1, uint8_t y1, uint8_t x2, uint8_t y2, SSD1306_COLOR color) {
int32_t deltaX = abs(x2 - x1);
int32_t deltaY = abs(y2 - y1);
int32_t signX = ((x1 < x2) ? 1 : -1);
int32_t signY = ((y1 < y2) ? 1 : -1);
int32_t error = deltaX - deltaY;
int32_t error2;
ssd1306_DrawPixel(d, x2, y2, color);
while((x1 != x2) || (y1 != y2)) {
ssd1306_DrawPixel(d, x1, y1, color);
error2 = error * 2;
if(error2 > -deltaY) {
error -= deltaY;
x1 += signX;
}
if(error2 < deltaX) {
error += deltaX;
y1 += signY;
}
}
return;
}
/* Draw polyline */
void ssd1306_Polyline(struct tSSD1306 *d, const SSD1306_VERTEX *par_vertex, uint16_t par_size, SSD1306_COLOR color) {
uint16_t i;
if(par_vertex == NULL) {
return;
}
for(i = 1; i < par_size; i++) {
ssd1306_Line(d, par_vertex[i - 1].x, par_vertex[i - 1].y, par_vertex[i].x, par_vertex[i].y, color);
}
return;
}
/* Convert Degrees to Radians */
static float ssd1306_DegToRad(float par_deg) {
return par_deg * 3.14 / 180.0;
}
/* Normalize degree to [0;360] */
static uint16_t ssd1306_NormalizeTo0_360(uint16_t par_deg) {
uint16_t loc_angle;
if(par_deg <= 360) {
loc_angle = par_deg;
} else {
loc_angle = par_deg % 360;
loc_angle = ((par_deg != 0)?par_deg:360);
}
return loc_angle;
}
/*
* DrawArc. Draw angle is beginning from 4 quart of trigonometric circle (3pi/2)
* start_angle in degree
* sweep in degree
*/
void ssd1306_DrawArc(struct tSSD1306 *d, uint8_t x, uint8_t y, uint8_t radius, uint16_t start_angle, uint16_t sweep, SSD1306_COLOR color) {
static const uint8_t CIRCLE_APPROXIMATION_SEGMENTS = 36;
float approx_degree;
uint32_t approx_segments;
uint8_t xp1,xp2;
uint8_t yp1,yp2;
uint32_t count = 0;
uint32_t loc_sweep = 0;
float rad;
loc_sweep = ssd1306_NormalizeTo0_360(sweep);
count = (ssd1306_NormalizeTo0_360(start_angle) * CIRCLE_APPROXIMATION_SEGMENTS) / 360;
approx_segments = (loc_sweep * CIRCLE_APPROXIMATION_SEGMENTS) / 360;
approx_degree = loc_sweep / (float)approx_segments;
while(count < approx_segments)
{
rad = ssd1306_DegToRad(count*approx_degree);
xp1 = x + (int8_t)(sin(rad)*radius);
yp1 = y + (int8_t)(cos(rad)*radius);
count++;
if(count != approx_segments) {
rad = ssd1306_DegToRad(count*approx_degree);
} else {
rad = ssd1306_DegToRad(loc_sweep);
}
xp2 = x + (int8_t)(sin(rad)*radius);
yp2 = y + (int8_t)(cos(rad)*radius);
ssd1306_Line(d, xp1,yp1,xp2,yp2,color);
}
return;
}
/*
* Draw arc with radius line
* Angle is beginning from 4 quart of trigonometric circle (3pi/2)
* start_angle: start angle in degree
* sweep: finish angle in degree
*/
void ssd1306_DrawArcWithRadiusLine(struct tSSD1306 *d, uint8_t x, uint8_t y, uint8_t radius, uint16_t start_angle, uint16_t sweep, SSD1306_COLOR color) {
static const uint8_t CIRCLE_APPROXIMATION_SEGMENTS = 36;
float approx_degree;
uint32_t approx_segments;
uint8_t xp1 = 0;
uint8_t xp2 = 0;
uint8_t yp1 = 0;
uint8_t yp2 = 0;
uint32_t count = 0;
uint32_t loc_sweep = 0;
float rad;
loc_sweep = ssd1306_NormalizeTo0_360(sweep);
count = (ssd1306_NormalizeTo0_360(start_angle) * CIRCLE_APPROXIMATION_SEGMENTS) / 360;
approx_segments = (loc_sweep * CIRCLE_APPROXIMATION_SEGMENTS) / 360;
approx_degree = loc_sweep / (float)approx_segments;
rad = ssd1306_DegToRad(count*approx_degree);
uint8_t first_point_x = x + (int8_t)(sin(rad)*radius);
uint8_t first_point_y = y + (int8_t)(cos(rad)*radius);
while (count < approx_segments) {
rad = ssd1306_DegToRad(count*approx_degree);
xp1 = x + (int8_t)(sin(rad)*radius);
yp1 = y + (int8_t)(cos(rad)*radius);
count++;
if (count != approx_segments) {
rad = ssd1306_DegToRad(count*approx_degree);
} else {
rad = ssd1306_DegToRad(loc_sweep);
}
xp2 = x + (int8_t)(sin(rad)*radius);
yp2 = y + (int8_t)(cos(rad)*radius);
ssd1306_Line(d, xp1,yp1,xp2,yp2,color);
}
// Radius line
ssd1306_Line(d, x,y,first_point_x,first_point_y,color);
ssd1306_Line(d, x,y,xp2,yp2,color);
return;
}
/* Draw circle by Bresenhem's algorithm */
void ssd1306_DrawCircle(struct tSSD1306 *d, uint8_t par_x,uint8_t par_y,uint8_t par_r,SSD1306_COLOR par_color) {
int32_t x = -par_r;
int32_t y = 0;
int32_t err = 2 - 2 * par_r;
int32_t e2;
if (par_x >= SSD1306_WIDTH || par_y >= SSD1306_HEIGHT) {
return;
}
do {
ssd1306_DrawPixel(d, par_x - x, par_y + y, par_color);
ssd1306_DrawPixel(d, par_x + x, par_y + y, par_color);
ssd1306_DrawPixel(d, par_x + x, par_y - y, par_color);
ssd1306_DrawPixel(d, par_x - x, par_y - y, par_color);
e2 = err;
if (e2 <= y) {
y++;
err = err + (y * 2 + 1);
if(-x == y && e2 <= x) {
e2 = 0;
}
}
if (e2 > x) {
x++;
err = err + (x * 2 + 1);
}
} while (x <= 0);
return;
}
/* Draw filled circle. Pixel positions calculated using Bresenham's algorithm */
void ssd1306_FillCircle(struct tSSD1306 *d, uint8_t par_x,uint8_t par_y,uint8_t par_r,SSD1306_COLOR par_color) {
int32_t x = -par_r;
int32_t y = 0;
int32_t err = 2 - 2 * par_r;
int32_t e2;
if (par_x >= SSD1306_WIDTH || par_y >= SSD1306_HEIGHT) {
return;
}
do {
for (uint8_t _y = (par_y + y); _y >= (par_y - y); _y--) {
for (uint8_t _x = (par_x - x); _x >= (par_x + x); _x--) {
ssd1306_DrawPixel(d, _x, _y, par_color);
}
}
e2 = err;
if (e2 <= y) {
y++;
err = err + (y * 2 + 1);
if (-x == y && e2 <= x) {
e2 = 0;
}
}
if (e2 > x) {
x++;
err = err + (x * 2 + 1);
}
} while (x <= 0);
return;
}
/* Draw a rectangle */
void ssd1306_DrawRectangle(struct tSSD1306 *d, uint8_t x1, uint8_t y1, uint8_t x2, uint8_t y2, SSD1306_COLOR color) {
ssd1306_Line(d, x1,y1,x2,y1,color);
ssd1306_Line(d, x2,y1,x2,y2,color);
ssd1306_Line(d, x2,y2,x1,y2,color);
ssd1306_Line(d, x1,y2,x1,y1,color);
return;
}
/* Draw a filled rectangle */
void ssd1306_FillRectangle(struct tSSD1306 *d, uint8_t x1, uint8_t y1, uint8_t x2, uint8_t y2, SSD1306_COLOR color) {
uint8_t x_start = ((x1<=x2) ? x1 : x2);
uint8_t x_end = ((x1<=x2) ? x2 : x1);
uint8_t y_start = ((y1<=y2) ? y1 : y2);
uint8_t y_end = ((y1<=y2) ? y2 : y1);
for (uint8_t y= y_start; (y<= y_end)&&(y<SSD1306_HEIGHT); y++) {
for (uint8_t x= x_start; (x<= x_end)&&(x<SSD1306_WIDTH); x++) {
ssd1306_DrawPixel(d, x, y, color);
}
}
return;
}
/* Draw a bitmap */
void ssd1306_DrawBitmap(struct tSSD1306 *d, uint8_t x, uint8_t y, const unsigned char* bitmap, uint8_t w, uint8_t h, SSD1306_COLOR color) {
int16_t byteWidth = (w + 7) / 8; // Bitmap scanline pad = whole byte
uint8_t byte = 0;
if (x >= SSD1306_WIDTH || y >= SSD1306_HEIGHT) {
return;
}
for (uint8_t j = 0; j < h; j++, y++) {
for (uint8_t i = 0; i < w; i++) {
if (i & 7) {
byte <<= 1;
} else {
byte = (*(const unsigned char *)(&bitmap[j * byteWidth + i / 8]));
}
if (byte & 0x80) {
ssd1306_DrawPixel(d, x + i, y, color);
}
}
}
return;
}
void ssd1306_SetContrast(struct tSSD1306 *d, const uint8_t value) {
const uint8_t kSetContrastControlRegister = 0x81;
ssd1306_WriteCommand(d, kSetContrastControlRegister);
ssd1306_WriteCommand(d, value);
}
void ssd1306_SetDisplayOn(struct tSSD1306 *d, const uint8_t on) {
uint8_t value;
if (on) {
value = 0xAF; // Display on
//d->DisplayOn = 1;
d->flag |= __DISPLAY_ON;
} else {
value = 0xAE; // Display off
//d->DisplayOn = 0;
d->flag &= ~__DISPLAY_ON;
}
ssd1306_WriteCommand(d, value);
}
//uint8_t ssd1306_GetDisplayOn(struct tSSD1306 *d) { return d->DisplayOn; }
uint8_t ssd1306_GetDisplayOn(struct tSSD1306 *d) { return (d->flag & __DISPLAY_ON)?1:0; }