forked from khurramjaved96/Recursive-CNNs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
54 lines (40 loc) · 1.9 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
''' Document Localization using Recursive CNN
Maintainer : Khurram Javed
Email : [email protected] '''
import cv2
import numpy as np
import evaluation
def args_processor():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--imagePath", default="../058.jpg", help="Path to the document image")
parser.add_argument("-o", "--outputPath", default="../output.jpg", help="Path to store the result")
parser.add_argument("-rf", "--retainFactor", help="Floating point in range (0,1) specifying retain factor",
default="0.85")
parser.add_argument("-cm", "--cornerModel", help="Model for corner point refinement",
default="../cornerModelWell")
parser.add_argument("-dm", "--documentModel", help="Model for document corners detection",
default="../documentModelWell")
return parser.parse_args()
if __name__ == "__main__":
args = args_processor()
corners_extractor = evaluation.corner_extractor.GetCorners(args.documentModel)
corner_refiner = evaluation.corner_refiner.corner_finder(args.cornerModel)
img = cv2.imread(args.imagePath)
oImg = img
extracted_corners = corners_extractor.get(oImg)
corner_address = []
# Refine the detected corners using corner refiner
image_name = 0
for corner in extracted_corners:
image_name += 1
corner_img = corner[0]
refined_corner = np.array(corner_refiner.get_location(corner_img, 0.85))
# Converting from local co-ordinate to global co-ordinates of the image
refined_corner[0] += corner[1]
refined_corner[1] += corner[2]
# Final results
corner_address.append(refined_corner)
for a in range(0, len(extracted_corners)):
cv2.line(oImg, tuple(corner_address[a % 4]), tuple(corner_address[(a + 1) % 4]), (255, 0, 0), 4)
cv2.imwrite(args.outputPath, oImg)