This repository has been archived by the owner on Apr 11, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.py
243 lines (198 loc) · 8.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""A verification to the idea of LayoutGAN
Referred to https://github.com/sngjuk/LayoutGAN
Entrance of the program.
Copyright ©2019-current, Junru Zhong, All rights reserved.
"""
from __future__ import print_function
import random
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets
from tensorboardX import SummaryWriter
from torch.utils.checkpoint import checkpoint
import models
class MnistLayoutDataset(torch.utils.data.Dataset):
"""MNIST dataset and create torch dataset object."""
def __init__(self, path, element_num=128, gt_thresh=200):
super(MnistLayoutDataset, self).__init__()
self.train_data = torch.load(path + "/MNIST/processed/training.pt")[0]
self.element_num = element_num
# Guess: a threshold (阈值) to indicate this pixel is lighted (0-255).
self.gt_thresh = gt_thresh
def __getitem__(self, index):
"""Extract layout features from images."""
img = self.train_data[index] # Load an image.
gt_values = []
for id, i in enumerate(img):
for jd, j in enumerate(i):
# If the current grayscale value is larger than the threshold, note this point.
if j >= self.gt_thresh:
# Create the layout element.
# Meaning of `np.float32(2 * id +1) /56`?
gt_values.append(torch.Tensor([1, np.float32(2 * id + 1) / 56, np.float32(2 * jd + 1) / 56]))
graph_elements = []
# Shuffle, insert the images in a random order.
for _ in range(self.element_num):
ridx = random.randint(0, len(gt_values) - 1)
graph_elements.append(gt_values[ridx])
# MNIST layout elements format [1, x, y]
return torch.stack(graph_elements)
def __len__(self):
return len(self.train_data)
def real_loss(D_out, smooth=False):
"""Loss function from the discriminator to the generator (when result is real).
"""
labels = None
batch_size = D_out.size(0)
if smooth:
labels = torch.ones(batch_size, 128) * 0.9
else:
labels = torch.ones(batch_size, 128)
crit = nn.BCEWithLogitsLoss()
loss = crit(D_out.squeeze(), labels)
return loss
def fake_loss(D_out):
"""Loss function from the discriminator to the generator (when result is fake).
"""
batch_size = D_out.size(0)
labels = torch.zeros(batch_size, 128)
crit = nn.BCEWithLogitsLoss()
loss = crit(D_out.squeeze(), labels)
return loss
def train_mnist(device, writer):
# Root directory for dataset.
dataroot = "data"
# Number of workers for dataloader
dataloader_workers = 0
# Batch size during training
batch_size = 20
# Number of classes
cls_num = 1
# Number of geometry parameter
geo_num = 2
# Number of training epochs
num_epochs = 1 # Not provided in the article.
# Leaning rate for optimizers
learning_rate = 0.00002
# Beta1/2 hyperparameter for Adam optimizers (check the theory).
beta1 = 1.0 # Not provided in the article.
beta2 = 1.0
# Download MNIST dataset
_ = torchvision.datasets.MNIST(
root=dataroot, train=True, download=True, transform=None)
# Load MNIST dataset with layout processed.
train_mnist_layout = MnistLayoutDataset(dataroot)
train_mnist_layout_loader = torch.utils.data.DataLoader(
train_mnist_layout, batch_size=batch_size, num_workers=dataloader_workers)
# Initialize the generator and discriminator.
# element_num: 128 random points for each MNIST image.
generator = models.Generator(
n_gpu, class_num=cls_num, element_num=128, feature_size=3).to(device)
# element_num: 128 random points for each MNIST image.
discriminator = models.RelationDiscriminator(
n_gpu, class_num=cls_num, element_num=128, feature_size=3).to(device)
print(generator) # Check information of the generator.
print(discriminator) # Check information of the discriminator.
# Write models to TensorBoardX
# writer.add_graph(generator)
# writer.add_graph(discriminator)
# Initialize optimizers for models.
print('Initialize optimizers.')
generator_optimizer = optim.Adam(generator.parameters(), learning_rate)
discriminator_optimizer = optim.Adam(discriminator.parameters(), learning_rate)
# Initialize training parameters.
print('Initialize training.')
generator.train()
discriminator.train()
# Start training.
for epoch in range(num_epochs):
print('Start to train epoch %d.' % epoch)
for batch_i, real_images in enumerate(train_mnist_layout_loader):
print('In batch {0} of epoch {1}.'.format(batch_i + 1, epoch + 1))
real_images = real_images.to(device)
batch_size = real_images.size(0)
# Train discriminator
discriminator_optimizer.zero_grad()
print('Start train discriminator with real images.')
discriminator_real = discriminator(real_images)
discriminator_real_loss = real_loss(discriminator_real, False)
# TensorboardX
writer.add_scalar('Discriminator Real Loss', discriminator_real_loss, epoch + batch_i)
print('Finish train discriminator with real images.')
# Size of the zlist does not equal to element number.
# Zlist size should be [batch_size, element_num, feature_size]
# Refer to real image size: [batch_size, element_num, cls + geo_info]
zlist = []
for i in range(batch_size):
cls_z = np.ones((128, cls_num))
geo_z = np.random.normal(0, 1, size=(128, geo_num))
z = torch.Tensor(np.concatenate((cls_z, geo_z), axis=1))
zlist.append(z)
print('Generating fake images.')
fake_images = generator(torch.stack(zlist))
print('Finish generating fake images.')
print('Discriminating fake images.')
discriminator_fake = discriminator(fake_images)
print('Calculating discriminator loss.')
discriminator_fake_loss = fake_loss(discriminator_fake)
# TensorboardX
writer.add_scalar('Discriminator Fake Loss', discriminator_fake_loss, epoch + batch_i)
discriminator_loss = discriminator_real_loss + discriminator_fake_loss
# TensorboardX
writer.add_scalar('Discriminator Total Loss', discriminator_loss, epoch + batch_i)
print('Discriminator back propagation.')
discriminator_loss.backward()
discriminator_optimizer.step()
print('Finish discriminating fake images.')
# Reset the generator.
generator_optimizer.zero_grad()
zlist2 = []
for i in range(batch_size):
cls_z = np.ones((128, cls_num))
geo_z = np.random.normal(0, 1, size=(128, geo_num))
z = torch.Tensor(np.concatenate((cls_z, geo_z), axis=1))
zlist2.append(z)
print('Generating fake images 2.')
fake_images2 = generator(torch.stack(zlist2))
print('Discriminating fake images 2.')
discriminator_fake = discriminator(fake_images2)
print('Calculating loss of the generator.')
generator_loss = real_loss(discriminator_fake, False)
print('Generator back propagation.')
generator_loss.backward()
generator_optimizer.step()
# TensorboardX
writer.add_scalar('Generator Loss', generator_loss, epoch + batch_i)
# Generated image shape [batch_index, element_index, class + position]
# Transfer PyTorch tensor to numpy ndarray.
if device is not 'cpu':
images = fake_images2.cpu().detach().numpy()
else:
images = fake_images2.detach().numpy()
figures = []
for img_index in range(batch_size):
x = images[img_index][:][:, 1]
y = images[img_index][:][:, 2]
figure = plt.figure()
plt.scatter(x, y)
figures.append(figure)
# TensorBoardX
writer.add_figure('Generated Points', figures, epoch + batch_i)
print('Epoch [{:5d}/{:5d}] | discriminator_loss: {:6.4f} | generator_loss: {:6.4f}'.
format(epoch + 1, num_epochs, discriminator_loss.item(), generator_loss.item()))
if __name__ == '__main__':
# Enable this in CUDA environment.
n_gpu = 1 # Testing CPU mode.
if torch.cuda.is_available() and n_gpu > 0:
device = torch.device("cuda:0")
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
device = "cpu"
# TensorBoardX: create writer
writer = SummaryWriter()
train_mnist(device, writer)
writer.close()