The app is executed in the execution environment as one or more processes.
In the simplest case, the code is a stand-alone script, the execution environment is a developer's local laptop with an installed language runtime, and the process is launched via the command line (for example, python my_script.py
). On the other end of the spectrum, a production deploy of a sophisticated app may use many process types, instantiated into zero or more running processes.
Twelve-factor processes are stateless and share-nothing. Any data that needs to persist must be stored in a stateful backing service, typically a database.
The memory space or filesystem of the process can be used as a brief, single-transaction cache. For example, downloading a large file, operating on it, and storing the results of the operation in the database. The twelve-factor app never assumes that anything cached in memory or on disk will be available on a future request or job -- with many processes of each type running, chances are high that a future request will be served by a different process. Even when running only one process, a restart (triggered by code deploy, config change, or the execution environment relocating the process to a different physical location) will usually wipe out all local (e.g., memory and filesystem) state.
Asset packagers (such as Jammit or django-compressor) use the filesystem as a cache for compiled assets. A twelve-factor app prefers to do this compiling during the build stage, such as the Rails asset pipeline, rather than at runtime.
Some web systems rely on "sticky sessions" -- that is, caching user session data in memory of the app's process and expecting future requests from the same visitor to be routed to the same process. Sticky sessions are a violation of twelve-factor and should never be used or relied upon. Session state data is a good candidate for a datastore that offers time-expiration, such as Memcached or Redis.