-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_cnn.py
220 lines (192 loc) · 8.12 KB
/
train_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import click as ck
import pandas as pd
from deepgo.utils import Ontology
import torch as th
import numpy as np
from torch import nn
from torch.nn import functional as F
from torch import optim
from sklearn.metrics import roc_curve, auc, matthews_corrcoef
import copy
from torch.utils.data import DataLoader, IterableDataset, TensorDataset
from itertools import cycle
import math
from deepgo.aminoacids import to_onehot, MAXLEN
from dgl.nn import GraphConv
import dgl
from deepgo.torch_utils import FastTensorDataLoader
import csv
from torch.optim.lr_scheduler import MultiStepLR
from deepgo.utils import Ontology, propagate_annots
from deepgo.metrics import compute_roc
from multiprocessing import Pool
from functools import partial
@ck.command()
@ck.option(
'--data-root', '-dr', default='data',
help='Data folder')
@ck.option(
'--ont', '-ont', default='mf', type=ck.Choice(['mf', 'bp', 'cc']),
help='GO subontology')
@ck.option(
'--test-data-name', '-td', default='test', type=ck.Choice(['test', 'nextprot', 'valid']),
help='Test data set name')
@ck.option(
'--batch-size', '-bs', default=37,
help='Batch size for training')
@ck.option(
'--epochs', '-ep', default=256,
help='Training epochs')
@ck.option(
'--load', '-ld', is_flag=True, help='Load Model?')
@ck.option(
'--device', '-d', default='cuda:0',
help='Device')
def main(data_root, ont, test_data_name, batch_size, epochs, load, device):
go_file = f'{data_root}/go.obo'
model_file = f'{data_root}/{ont}/deepgocnn.th'
terms_file = f'{data_root}/{ont}/terms.pkl'
out_file = f'{data_root}/{ont}/{test_data_name}_predictions_deepgocnn.pkl'
go = Ontology(go_file, with_rels=True)
loss_func = nn.BCELoss()
test_data_file = f'{test_data_name}_data.pkl'
terms_dict, train_data, valid_data, test_data, test_df = load_data(
data_root, ont, terms_file, test_data_file=test_data_file)
n_terms = len(terms_dict)
net = DGCNNModel(n_terms, device).to(device)
train_features, train_labels = train_data
valid_features, valid_labels = valid_data
test_features, test_labels = test_data
train_loader = FastTensorDataLoader(
*train_data, batch_size=batch_size, shuffle=True)
valid_loader = FastTensorDataLoader(
*valid_data, batch_size=batch_size, shuffle=False)
test_loader = FastTensorDataLoader(
*test_data, batch_size=batch_size, shuffle=False)
valid_labels = valid_labels.detach().cpu().numpy()
test_labels = test_labels.detach().cpu().numpy()
optimizer = th.optim.Adam(net.parameters(), lr=1e-3)
scheduler = MultiStepLR(optimizer, milestones=[1, 3,], gamma=0.1)
best_loss = 10000.0
if not load:
print('Training the model')
for epoch in range(epochs):
net.train()
train_loss = 0
train_steps = int(math.ceil(len(train_labels) / batch_size))
with ck.progressbar(length=train_steps, show_pos=True) as bar:
for batch_features, batch_labels in train_loader:
bar.update(1)
batch_features = batch_features.to(device)
batch_labels = batch_labels.to(device)
logits = net(batch_features)
loss = F.binary_cross_entropy(logits, batch_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.detach().item()
train_loss /= train_steps
print('Validation')
net.eval()
with th.no_grad():
valid_steps = int(math.ceil(len(valid_labels) / batch_size))
valid_loss = 0
preds = []
with ck.progressbar(length=valid_steps, show_pos=True) as bar:
for batch_features, batch_labels in valid_loader:
bar.update(1)
batch_features = batch_features.to(device)
batch_labels = batch_labels.to(device)
logits = net(batch_features)
batch_loss = F.binary_cross_entropy(logits, batch_labels)
valid_loss += batch_loss.detach().item()
preds.append(logits.detach().cpu().numpy())
valid_loss /= valid_steps
preds = np.concatenate(preds)
roc_auc = compute_roc(valid_labels, preds)
print(f'Epoch {epoch}: Loss - {train_loss}, Valid loss - {valid_loss}, AUC - {roc_auc}')
if valid_loss < best_loss:
best_loss = valid_loss
print('Saving model')
th.save(net.state_dict(), model_file)
scheduler.step()
# Loading best model
print('Loading the best model')
net.load_state_dict(th.load(model_file))
net.eval()
with th.no_grad():
test_steps = int(math.ceil(len(test_labels) / batch_size))
test_loss = 0
preds = []
with ck.progressbar(length=test_steps, show_pos=True) as bar:
for batch_features, batch_labels in test_loader:
bar.update(1)
batch_features = batch_features.to(device)
batch_labels = batch_labels.to(device)
logits = net(batch_features)
batch_loss = F.binary_cross_entropy(logits, batch_labels)
test_loss += batch_loss.detach().cpu().item()
preds.append(logits.detach().cpu().numpy())
test_loss /= test_steps
preds = np.concatenate(preds)
roc_auc = compute_roc(test_labels, preds)
print(f'Test Loss - {test_loss}, AUC - {roc_auc}')
preds = list(preds)
# Propagate scores using ontology structure
with Pool(32) as p:
preds = p.map(partial(propagate_annots, go=go, terms_dict=terms_dict), preds)
test_df['preds'] = preds
test_df.to_pickle(out_file)
class DGCNNModel(nn.Module):
def __init__(self, nb_gos, device, nb_filters=512, max_kernel=129, hidden_dim=1024):
super().__init__()
self.nb_gos = nb_gos
# DeepGOCNN
kernels = range(8, max_kernel, 8)
convs = []
for kernel in kernels:
convs.append(
nn.Sequential(
nn.Conv1d(22, nb_filters, kernel, device=device),
nn.MaxPool1d(MAXLEN - kernel + 1)
))
self.convs = nn.ModuleList(convs)
self.fc1 = nn.Linear(len(kernels) * nb_filters, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, nb_gos)
def deepgocnn(self, proteins):
n = proteins.shape[0]
output = []
for conv in self.convs:
output.append(conv(proteins))
output = th.cat(output, dim=1)
output = th.relu(self.fc1(output.view(n, -1)))
output = th.sigmoid(self.fc2(output))
return output
def forward(self, proteins):
return self.deepgocnn(proteins)
def load_data(data_root, ont, terms_file, test_data_file='test_data.pkl'):
terms_df = pd.read_pickle(terms_file)
terms = terms_df['gos'].values.flatten()
terms_dict = {v: i for i, v in enumerate(terms)}
print('Terms', len(terms))
train_df = pd.read_pickle(f'{data_root}/{ont}/train_data.pkl')
valid_df = pd.read_pickle(f'{data_root}/{ont}/valid_data.pkl')
test_df = pd.read_pickle(f'{data_root}/{ont}/{test_data_file}')
train_data = get_data(train_df, terms_dict)
valid_data = get_data(valid_df, terms_dict)
test_data = get_data(test_df, terms_dict)
return terms_dict, train_data, valid_data, test_data, test_df
def get_data(df, terms_dict):
data = th.zeros((len(df), 22, MAXLEN), dtype=th.float32)
labels = th.zeros((len(df), len(terms_dict)), dtype=th.float32)
for i, row in enumerate(df.itertuples()):
seq = row.sequences
seq = th.FloatTensor(to_onehot(seq))
data[i, :, :] = seq
for go_id in row.prop_annotations:
if go_id in terms_dict:
g_id = terms_dict[go_id]
labels[i, g_id] = 1
return data, labels
if __name__ == '__main__':
main()