Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

expected 'DTYPEint_t' but got 'long long' #4

Open
Kiord opened this issue Apr 5, 2023 · 1 comment
Open

expected 'DTYPEint_t' but got 'long long' #4

Kiord opened this issue Apr 5, 2023 · 1 comment

Comments

@Kiord
Copy link

Kiord commented Apr 5, 2023

Hello,

I installed the lib from the sources using python setup.py install and ran the tests, but got an error :

>>> from pysapc import tests
>>> tests.testDense()
2023-04-05 10:48:52.494901, start SKlearn Affinity Propagation
<path_to_my_conda_env>\lib\site-packages\sklearn\utils\validation.py:723: FutureWarning: np.matrix usage is deprecated in 1.0 and will raise a TypeError in 1.2. Please convert to a numpy array with np.asarray. For more information see: https://numpy.org/doc/stable/reference/generated/numpy.matrix.html
  warnings.warn(
Converged after 112 iterations.
2023-04-05 10:48:55.330916, start Fast Sparse Affinity Propagation Cluster
2023-04-05 10:48:55.386707, Starting Sparse Affinity Propagation
2023-04-05 10:48:55.538004, Starting sparseMatrixPrepare.rmSingleSamples
2023-04-05 10:48:55.578824, Starting sparseMatrixPrepare.preCompute
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<path_to_my_conda_env>\Lib\site-packages\pysapc-1.2.0-py3.8-win-amd64.egg\pysapc\tests\test_sap.py", line 106, in testDense
    exemplars_similarity=clusterSimilarityWithSklearnAPC(data_file=dense_similarity_matrix_file,damping=0.9,max_iter=200,convergence_iter=15,preference='min')
  File "<path_to_my_conda_env>\Lib\site-packages\pysapc-1.2.0-py3.8-win-amd64.egg\pysapc\tests\test_sap.py", line 66, in clusterSimilarityWithSklearnAPC
    sap_exemplars=sap.fit_predict(simi_mat_dense)
  File "<path_to_my_conda_env>\Lib\site-packages\pysapc-1.2.0-py3.8-win-amd64.egg\pysapc\SparseAPCluster.py", line 447, in fit_predict
    self.exemplars_=sparseAffinityPropagation(row_array,col_array,data_array,\
  File "<path_to_my_conda_env>\Lib\site-packages\pysapc-1.2.0-py3.8-win-amd64.egg\pysapc\SparseAPCluster.py", line 198, in sparseAffinityPropagation
    sparseMatrixPrepare.preCompute(rowBased_row_array,rowBased_col_array,S_rowBased_data_array)
  File "<path_to_my_conda_env>\Lib\site-packages\pysapc-1.2.0-py3.8-win-amd64.egg\pysapc\sparseMatrixPrepare.py", line 111, in preCompute
    colBased_row_array=sparseAP_cy.npArrRearrange_int_para(rowBased_row_array,row_to_col_ind_arr)
  File "sparseAP_cy.pyx", line 222, in sparseAP_cy.npArrRearrange_int_para
    cpdef npArrRearrange_int_para(DTYPEint_t[::1] arr,DTYPEint_t[::1] ind):
ValueError: Buffer dtype mismatch, expected 'DTYPEint_t' but got 'long long'
>>> tests.testSparse()
2023-04-05 10:48:58.443679, start Sparse Affinity Propagation with dense matrix
2023-04-05 10:48:58.487899, Starting Sparse Affinity Propagation
2023-04-05 10:48:58.747755, Starting sparseMatrixPrepare.rmSingleSamples
2023-04-05 10:48:58.795544, Starting sparseMatrixPrepare.preCompute
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<path_to_my_conda_env>\Lib\site-packages\pysapc-1.2.0-py3.8-win-amd64.egg\pysapc\tests\test_sap.py", line 117, in testSparse
    exemplars_similarity=clusterSimilarityWithDenseMatrix(data_file=dense_similarity_matrix_file,cutoff=cutoff,damping=0.9,max_iter=500,convergence_iter=15,preference='min')
  File "<path_to_my_conda_env>\Lib\site-packages\pysapc-1.2.0-py3.8-win-amd64.egg\pysapc\tests\test_sap.py", line 90, in clusterSimilarityWithDenseMatrix
    sap_dense_exemplars=sap_dense.fit_predict(simi_mat_dense)
  File "<path_to_my_conda_env>\Lib\site-packages\pysapc-1.2.0-py3.8-win-amd64.egg\pysapc\SparseAPCluster.py", line 447, in fit_predict
    self.exemplars_=sparseAffinityPropagation(row_array,col_array,data_array,\
  File "<path_to_my_conda_env>\Lib\site-packages\pysapc-1.2.0-py3.8-win-amd64.egg\pysapc\SparseAPCluster.py", line 198, in sparseAffinityPropagation
    sparseMatrixPrepare.preCompute(rowBased_row_array,rowBased_col_array,S_rowBased_data_array)
  File "<path_to_my_conda_env>\Lib\site-packages\pysapc-1.2.0-py3.8-win-amd64.egg\pysapc\sparseMatrixPrepare.py", line 111, in preCompute
    colBased_row_array=sparseAP_cy.npArrRearrange_int_para(rowBased_row_array,row_to_col_ind_arr)
  File "sparseAP_cy.pyx", line 222, in sparseAP_cy.npArrRearrange_int_para
    cpdef npArrRearrange_int_para(DTYPEint_t[::1] arr,DTYPEint_t[::1] ind):
ValueError: Buffer dtype mismatch, expected 'DTYPEint_t' but got 'long long'

relevant packages versions :

python==3.8.1
numpy==1.21.5
scipy==1.8.0
pandas==1.4.2
Cython==0.29.28
@Kiord
Copy link
Author

Kiord commented Apr 5, 2023

It appears that np.lexsort outputs a int64 array even with two int32 arrays as input.

Quick fixes :

change line 110 in sparseMatrixPrepare.py

row_to_col_ind_arr=np.lexsort((rowBased_row_array,rowBased_col_array))

to

row_to_col_ind_arr=np.lexsort((rowBased_row_array,rowBased_col_array)).astype(np.int32)

Also, sklearn's AffinityPropagation.cluster_centers_indices_ is int64, so :

change line 63 in test_sap.py

sk_exemplars=np.asarray([cluster_centers_indices[i] for i in labels])

to

sk_exemplars=np.asarray([cluster_centers_indices[i] for i in labels], dtype=np.int32)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant