-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfukushima_20230710.qmd
694 lines (563 loc) · 19.4 KB
/
fukushima_20230710.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
---
title: "후쿠시마 오염수 방류"
subtitle: "경기도 해안선 인접 구시군 영향"
author: "이광춘"
institute: "공익법인 한국 R 사용자회"
date: 2023-07-11
format:
insper-revealjs:
self-contained: false
footer: |
한국 R 사용자회 [chatGPT](https://r2bit.com/chatGPT/). theme [insper](https://github.com/padsInsper/quarto-insper-theme) 소스코드 [GitHub](https://github.com/padsInsper/quarto-insper-theme).
date-format: long
lang: ko
filters:
- lightbox
lightbox: auto
bibliography: bibliography.bib
csl: apa-single-spaced.csl
editor_options:
chunk_output_type: console
---
## 목차
1. 해안선 인접 구시군
1. 경기도 해안선 인접 구시군
1. 경기도 국가/지방 항구
1. 총선, 대선, 지선 선거결과
# 해안선 인접 구시군
## 해안선 {.smaller}
::: {.panel-tabset}
### 대한민국 지도
```{r}
library(sf)
library(giscoR)
library(tidyverse)
library(ggrepel)
library(krvote)
library(gt)
library(gtExtras)
library(janitor)
sf_use_s2(FALSE)
korea_sf <- giscoR::gisco_get_countries(
year = "2020",
epsg = "4326",
resolution = "01",
country = "KR"
)
plot(st_geometry(korea_sf))
```
### 해안선
```{r}
#| eval: false
# i_world_coastline <- st_read("D:/tcs/map_challenge/data/gshhg-shp-2.3.7/GSHHS_shp/i/GSHHS_i_L1.shp")
#
# i_coastline_sf <- i_world_coastline %>%
# st_crop(st_bbox(korea_sf))
i_coastline_sf <- read_rds("data/i_coastline_sf.rds")
i_coastline_gg <- ggplot(i_coastline_sf) +
geom_sf(color = "blue", fill = "blue", alpha = 0.2) +
theme_minimal() +
theme(
plot.background = element_rect(
fill = "black",
color = "black"
),
panel.grid = element_blank(),
axis.text = element_text(colour = "grey90")
)
ragg::agg_png("img/fukushima/i_coastline_gg.png",
width = 10, height = 7, units = "in", res = 600)
i_coastline_gg
dev.off()
# i_coastline_sf %>%
# write_rds("data/i_coastline_sf.rds")
```
![](img/fukushima/i_coastline_gg.png)
### 결합
```{r}
#| eval: false
# korea_coast_sf <- st_join(korea_sf, i_coastline_sf)
# korea_coast_sf %>%
# write_rds("data/korea_coast_sf.rds")
korea_coast_sf <- read_rds("data/korea_coast_sf.rds")
korea_coast_gg <- ggplot(korea_coast_sf) +
geom_sf(color = "black", fill = "transparent", alpha = 0.2) +
geom_sf(data = i_coastline_sf, color = "blue", fill = "transparent", alpha = 0.2) +
theme_minimal() +
theme(
panel.grid = element_blank(),
axis.text = element_text(colour = "grey90")
)
ragg::agg_png("img/fukushima/korea_coast_gg.png",
width = 10, height = 7, units = "in", res = 600)
korea_coast_gg
dev.off()
```
![](img/fukushima/korea_coast_gg.png)
:::
## (21대) 국회의원 선거구 {.smaller}
:::{.panel-tabset}
### 총선 선거구
```{r}
#| eval: false
precinct_sf <- st_read("D:/tcs/map_challenge/data/2020_21_elec_253.json")
kr_precinct_sf <- precinct_sf %>%
mutate(SGG_3 = str_remove(SGG_3, pattern = '^\\S*\\s'))
precinct_sf_gg <- ggplot() +
geom_sf(data = kr_precinct_sf) +
geom_text_repel(data = kr_precinct_sf %>% filter(!SGG_1 %in% c("서울", "경기", "부산", "인천", "광주", "대전", "대구", "울산")), aes(label = SGG_3, geometry = geometry),
stat = "sf_coordinates", min.segment.length = 0,
max.overlaps = Inf, size = 2) +
labs(x = "", y = "")
ragg::agg_png("img/fukushima/precinct_sf_gg.png",
width = 10, height = 7, units = "in", res = 600)
precinct_sf_gg
dev.off()
```
![](img/fukushima/precinct_sf_gg.png)
### 해안선 인접 선거구
```{r}
#| eval: false
kr_coast_sf <- st_filter(precinct_sf, i_coastline_sf, .predicate = st_overlaps)
precinct_coast_gg <- ggplot() +
geom_sf(data = kr_coast_sf) +
geom_sf(data = korea_coast_sf, color = "blue", fill = "transparent") +
geom_text_repel(data = kr_coast_sf, aes(label = SGG_3, geometry = geometry),
stat = "sf_coordinates", min.segment.length = 0, size = 3,
max.overlaps = Inf, box.padding = 1.0) +
labs(x = "",
y = "")
ragg::agg_png("img/fukushima/precinct_coast_gg.png",
width = 10, height = 7, units = "in", res = 600)
precinct_coast_gg
dev.off()
```
![](img/fukushima/precinct_coast_gg.png)
:::
## 경기도 {.smaller}
:::{.panel-tabset}
### 선거구
```{r}
#| eval: false
gg_precinct_sf <- precinct_sf %>%
filter(SGG_1 == "경기") %>%
mutate(SGG_3 = str_remove(SGG_3, "경기\\s+"))
gg_precinct_gg <- ggplot() +
geom_sf(data = gg_precinct_sf) +
geom_text_repel(data = gg_precinct_sf, aes(label = SGG_3, geometry = geometry),
stat = "sf_coordinates", min.segment.length = 0,
max.overlaps = Inf, size =2) +
labs(x="", y="")
ragg::agg_png("img/fukushima/gg_precinct_gg.png",
width = 10, height = 7, units = "in", res = 600)
gg_precinct_gg
dev.off()
```
![](img/fukushima/gg_precinct_gg.png)
### 해안선 인접 선거구
```{r}
#| eval: false
gg_coast_sf <- st_filter(gg_precinct_sf, i_coastline_sf, .predicate = st_overlaps)
gg_coast_gg <- ggplot() +
geom_sf(data = gg_coast_sf) +
geom_sf(data = gg_precinct_sf, color = "blue", fill = "transparent") +
geom_text_repel(data = gg_coast_sf, aes(label = SGG_3, geometry = geometry),
stat = "sf_coordinates", min.segment.length = 0, size = 3,
max.overlaps = Inf, box.padding = 1.0) +
labs(x = "",
y = "")
ragg::agg_png("img/fukushima/gg_coast_gg.png",
width = 10, height = 7, units = "in", res = 600)
gg_coast_gg
dev.off()
```
![](img/fukushima/gg_coast_gg.png)
### 선거구명
```{r}
# gg_coast_sf %>%
# write_rds("data/gg_coast_sf.rds")
gg_coast_sf <- read_rds("data/gg_coast_sf.rds")
gg_coast_sf %>%
sf::st_drop_geometry() %>%
mutate(SGG_3 = str_remove(SGG_3, pattern = '^\\S*\\s')) %>%
mutate(순 = 1:n()) %>%
select(-SGG_2) %>%
select(순, everything()) %>%
gt::gt() %>%
cols_align(align = "center") %>%
tab_header(title = "해안선 인접 총선 선거구",
subtitle = md("`선관위 제21대 선거구 기준`")) %>%
cols_label(
SGG_Code = "시군구 코드",
SGG_1 = "시도명",
SGG_3 = "선거구명"
) %>%
gt_theme_538()
```
:::
## 항구
```{r}
#| eval: false
admin_sf <- st_read("D:/tcs/map_challenge/data/HangJeongDong_ver20230401.geojson")
gg_incheon_sf <- admin_sf %>%
filter(sidonm %in% c("경기도")) %>%
group_by(sidonm, sggnm) %>%
summarize(geometry = st_union(geometry)) %>%
mutate(바다인접 = ifelse(str_detect(sggnm, "김포|안산|화성|평택|시흥"), "바다인접", "비인접")) %>%
ungroup()
ggport_geo <- read_rds("D:/tcs/map_challenge/data/ggport_geo.rds") %>%
select(-data, - lonlat) %>%
add_row("어항_명" = "평택항", "어항_종류" = "국가어항", "주소" = "경기도 평택시 포승읍 평택항만길 73", "lon" = 126.8483825, "lat" = 36.9574197)
ggport_geo_sf <- ggport_geo %>%
sf::st_as_sf(coords = c("lon", "lat"), crs = 4326, agr = "constant")
gg_port_gg <- ggplot() +
geom_sf(data = gg_incheon_sf, aes(fill = 바다인접), linewidth = 0.1, show.legend = FALSE) +
geom_sf(data = ggport_geo_sf, aes(color = 어항_종류)) +
ggrepel::geom_text_repel(
data = ggport_geo_sf,
aes(label = 어항_명, geometry = geometry), stat = "sf_coordinates",
min.segment.length = 1, size = 3
) +
theme_void() +
labs(title = "경기도 국가/지방어항 현황",
color = "어항 종류") +
ggrepel::geom_text_repel(
data = gg_incheon_sf,
aes(label = sggnm, geometry = geometry), stat = "sf_coordinates",
min.segment.length = 1, size = 3, show.legend = FALSE
) +
scale_fill_manual(values = c("skyblue", "gray95")) +
scale_color_manual(values = c("지방어항" = "blue", "국가어항" = "red",
"바다인접" = "black", "비인접" = "orange"))
ragg::agg_png("img/fukushima/gg_port_gg.png",
width = 10, height = 7, units = "in", res = 600)
gg_port_gg
dev.off()
```
![](img/fukushima/gg_port_gg.png)
# 5 구시군 투개표
## 총선 (2020년)
:::{.panel-tabset}
### 득표수
```{r}
library(stringi)
general_sgg <- krvote::general_2020 %>%
filter( str_detect(시도, "^경기"),
str_detect(선거구, "^화성|^평택|^김포|^안산시단원구|^시흥"))
general_sgg_table <- general_sgg %>%
unnest(data) %>%
## CP949 인코딩 처리
mutate(구분_cp949 = iconv(구분, "euc-kr", "utf-8")) %>%
mutate(구분 = ifelse(is.na(구분_cp949), 구분, 구분_cp949)) %>%
group_by(선거구, 구분) %>%
summarise( 득표 = sum(사람수)) %>%
filter(구분 != "무표투표수",
구분 != "기권수",
구분 != "선거인수",
구분 != "투표수",
구분 != "계") %>%
ungroup() %>%
mutate(구분 = case_when( str_detect(구분, "민주당") ~ "민주당",
str_detect(구분, "미래통합") ~ "국민의힘",
TRUE ~ "기타")) %>%
group_by(선거구, 구분) %>%
summarise(득표 = sum(득표)) %>%
ungroup() %>%
pivot_wider(names_from = 구분, values_from = 득표) %>%
janitor::adorn_totals(where = "col", name = "합계")
general_sgg_table %>%
relocate(기타, .before = 합계) %>%
gt() %>%
fmt_integer(columns = 국민의힘:합계) %>%
cols_align(columns = 선거구, align = "center") %>%
tab_spanner(
label = "대선 후보 정당",
columns = c(국민의힘, 민주당, 기타)
) %>%
gt_theme_538() %>%
tab_header(
title = md("경기도 서해 인접 5개 구시군 정당별 득표"),
subtitle = md("`제21대 국회의원선거`")
) %>%
tab_style(
style = list(cell_fill(color = "blue"),
cell_text(color = "white")),
locations = cells_body(columns = 민주당,
rows = 민주당 > 국민의힘)
) %>%
tab_style(
style = list(cell_fill(color = "red"),
cell_text(color = "white")),
locations = cells_body(columns = 국민의힘,
rows = 민주당 < 국민의힘)
)
```
### 득표율
```{r}
general_sgg_table %>%
adorn_percentages() %>%
gt::gt() %>%
fmt_percent(columns = 국민의힘:합계, decimals = 1) %>%
cols_align(columns = 선거구, align = "center") %>%
tab_spanner(
label = "대선 후보 정당",
columns = c(국민의힘, 민주당, 기타)
) %>%
gt_theme_538() %>%
tab_header(
title = md("경기도 서해 인접 5개 구시군 정당별 득표율(%)"),
subtitle = md("`제21대 국회의원선거`")
) %>%
tab_style(
style = list(cell_fill(color = "blue"),
cell_text(color = "white")),
locations = cells_body(columns = 민주당,
rows = 민주당 > 국민의힘)
) %>%
tab_style(
style = list(cell_fill(color = "red"),
cell_text(color = "white")),
locations = cells_body(columns = 국민의힘,
rows = 민주당 < 국민의힘)
)
```
:::
## 대선 (2022년)
:::{.panel-tabset}
### 득표수
```{r}
library(krvote)
library(janitor)
library(gt)
library(gtExtras)
ggport_sgg <- krvote::election_20220309$득표율 %>%
filter( str_detect(시도명, "^경기"),
str_detect(구시군명, "^화성|^평택|^김포|^안산시단원구|^시흥"))
ggport_sgg_table <- ggport_sgg %>%
pivot_longer(이재명:계, names_to = "후보", values_to = "득표") %>%
group_by(구시군명, 후보) %>%
summarise(득표 = sum(득표)) %>%
filter(후보 != "계") %>%
ungroup() %>%
mutate(후보 = case_when( 후보 == "윤석열" ~ "국민의힘",
후보 == "이재명" ~ "민주당",
TRUE ~ "기타")) %>%
group_by(구시군명, 후보) %>%
summarise( 득표 = sum(득표)) %>%
ungroup() %>%
pivot_wider(names_from = 후보, values_from = 득표) %>%
janitor::adorn_totals(where = "col", name = "합계")
ggport_sgg_table %>%
relocate(기타, .before = 합계) %>%
gt() %>%
fmt_integer(columns = 국민의힘:합계) %>%
cols_align(columns = 구시군명, align = "center") %>%
tab_spanner(
label = "대선 후보 정당",
columns = c(국민의힘, 민주당, 기타)
) %>%
gt_theme_538() %>%
tab_header(
title = md("경기도 서해 인접 5개 구시군 정당별 득표"),
subtitle = md("`제20대 대통령선거`")
) %>%
tab_style(
style = list(cell_fill(color = "blue"),
cell_text(color = "white")),
locations = cells_body(columns = 민주당,
rows = 민주당 > 국민의힘)
) %>%
tab_style(
style = list(cell_fill(color = "red"),
cell_text(color = "white")),
locations = cells_body(columns = 국민의힘,
rows = 민주당 < 국민의힘)
)
```
### 득표율
```{r}
ggport_sgg_table %>%
adorn_percentages() %>%
gt::gt() %>%
fmt_percent(columns = 국민의힘:합계, decimals = 1) %>%
cols_align(columns = 구시군명, align = "center") %>%
tab_spanner(
label = "대선 후보 정당",
columns = c(국민의힘, 민주당, 기타)
) %>%
gt_theme_538() %>%
tab_header(
title = md("경기도 서해 인접 5개 구시군 정당별 득표율(%)"),
subtitle = md("`제20대 대통령선거`")
) %>%
tab_style(
style = list(cell_fill(color = "blue"),
cell_text(color = "white")),
locations = cells_body(columns = 민주당,
rows = 민주당 > 국민의힘)
) %>%
tab_style(
style = list(cell_fill(color = "red"),
cell_text(color = "white")),
locations = cells_body(columns = 국민의힘,
rows = 민주당 < 국민의힘)
)
```
:::
## 지선 - 도지사 (2022년)
:::{.panel-tabset}
### 득표수
```{r}
local_sido_raw <- krvote::local_sido_20220601 %>%
filter(str_detect(선거구명, "^경기")) %>%
unnest(data) %>%
filter(str_detect(구시군명, "^화성|^평택|^김포|^안산시단원구|^시흥")) %>%
pivot_longer(더불어민주당_김동연:기권수) %>%
separate(name, into = c("정당", "후보"), sep = "_") %>%
filter(!is.na(후보)) %>%
group_by(구시군명, 정당) %>%
summarise(득표 = sum(value)) %>%
ungroup()
local_sido_table <- local_sido_raw %>%
mutate(정당 = case_when( str_detect(정당, "민주당") ~ "민주당",
str_detect(정당, "국민의힘") ~ "국민의힘",
TRUE ~ "기타")) %>%
group_by(구시군명, 정당) %>%
summarise(득표 = sum(득표)) %>%
ungroup() %>%
pivot_wider(names_from = 정당, values_from = 득표) %>%
janitor::adorn_totals(where = "col", name = "합계")
local_sido_table %>%
relocate(기타, .before = 합계) %>%
gt() %>%
fmt_integer(columns = 국민의힘:합계) %>%
cols_align(columns = 구시군명, align = "center") %>%
tab_spanner(
label = "지방선거 도지사 후보 정당",
columns = c(국민의힘, 민주당, 기타)
) %>%
gt_theme_538() %>%
tab_header(
title = md("경기도 서해 인접 5개 구시군 정당별 득표"),
subtitle = md("`제8대 지방선거`")
) %>%
tab_style(
style = list(cell_fill(color = "blue"),
cell_text(color = "white")),
locations = cells_body(columns = 민주당,
rows = 민주당 > 국민의힘)
) %>%
tab_style(
style = list(cell_fill(color = "red"),
cell_text(color = "white")),
locations = cells_body(columns = 국민의힘,
rows = 민주당 < 국민의힘)
)
```
### 득표율
```{r}
local_sido_table %>%
adorn_percentages() %>%
gt::gt() %>%
fmt_percent(columns = 국민의힘:합계, decimals = 1) %>%
cols_align(columns = 구시군명, align = "center") %>%
tab_spanner(
label = "지방선거 도지사 후보 정당",
columns = c(국민의힘, 민주당, 기타)
) %>%
gt_theme_538() %>%
tab_header(
title = md("경기도 서해 인접 5개 구시군 정당별 득표"),
subtitle = md("`제8대 지방선거`")
) %>%
tab_style(
style = list(cell_fill(color = "blue"),
cell_text(color = "white")),
locations = cells_body(columns = 민주당,
rows = 민주당 > 국민의힘)
) %>%
tab_style(
style = list(cell_fill(color = "red"),
cell_text(color = "white")),
locations = cells_body(columns = 국민의힘,
rows = 민주당 < 국민의힘)
)
```
:::
## 지선 - 구시군장 (2022년)
:::{.panel-tabset}
### 득표수
```{r}
local_sgg_raw <- krvote::local_sgg_20220601 %>%
filter(str_detect(시도명, "^경기")) %>%
filter(str_detect(구시군명, "^화성|^평택|^김포|^안산|^시흥")) %>%
mutate(득표 = parse_number(득표)) %>%
group_by(구시군명, 정당) %>%
summarise(득표 = sum(득표)) %>%
ungroup()
local_sgg_table <- local_sgg_raw %>%
mutate(정당 = case_when( str_detect(정당, "민주당") ~ "민주당",
str_detect(정당, "국민의힘") ~ "국민의힘",
TRUE ~ "기타")) %>%
group_by(구시군명, 정당) %>%
summarise(득표 = sum(득표, na.rm = TRUE)) %>%
ungroup() %>%
pivot_wider(names_from = 정당, values_from = 득표, values_fill = 0) %>%
janitor::adorn_totals(where = "col", name = "합계")
local_sgg_table %>%
relocate(기타, .before = 합계) %>%
gt() %>%
fmt_integer(columns = 국민의힘:합계) %>%
cols_align(columns = 구시군명, align = "center") %>%
tab_spanner(
label = "지방선거 구시군의 장 후보 정당",
columns = c(국민의힘, 민주당, 기타)
) %>%
gt_theme_538() %>%
tab_header(
title = md("경기도 서해 인접 5개 구시군 정당별 득표"),
subtitle = md("`제8대 지방선거`")
) %>%
tab_style(
style = list(cell_fill(color = "blue"),
cell_text(color = "white")),
locations = cells_body(columns = 민주당,
rows = 민주당 > 국민의힘)
) %>%
tab_style(
style = list(cell_fill(color = "red"),
cell_text(color = "white")),
locations = cells_body(columns = 국민의힘,
rows = 민주당 < 국민의힘)
)
```
### 득표율
```{r}
local_sgg_table %>%
adorn_percentages() %>%
gt::gt() %>%
fmt_percent(columns = 국민의힘:합계, decimals = 1) %>%
cols_align(columns = 구시군명, align = "center") %>%
tab_spanner(
label = "지방선거 구시군의 장 후보 정당",
columns = c(국민의힘, 민주당, 기타)
) %>%
gt_theme_538() %>%
tab_header(
title = md("경기도 서해 인접 5개 구시군 정당별 득표"),
subtitle = md("`제8대 지방선거`")
) %>%
tab_style(
style = list(cell_fill(color = "blue"),
cell_text(color = "white")),
locations = cells_body(columns = 민주당,
rows = 민주당 > 국민의힘)
) %>%
tab_style(
style = list(cell_fill(color = "red"),
cell_text(color = "white")),
locations = cells_body(columns = 국민의힘,
rows = 민주당 < 국민의힘)
)
```
:::