-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathbuild_model.py
346 lines (312 loc) · 17.4 KB
/
build_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
""" Define the network architecture.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.rnn as rnn_utils
import numpy as np
class EncoderRNN(nn.Module):
"""
A bidirectional RNN. It takes FBANK features and outputs the output state vectors of every time step.
"""
def __init__(self, hidden_size, num_layers, use_bn):
"""
Args:
hidden_size (integer): Size of GRU cells.
num_layers (integer): Number of GRU layers.
use_bn (bool): Whether to insert BatchNorm in each layer.
"""
super(EncoderRNN, self).__init__()
self.embed = nn.Linear(240, hidden_size) # 240 is the dimension of acoustic features.
self.rnns = nn.ModuleList([])
if use_bn:
self.bns = nn.ModuleList([])
for i in range(num_layers):
if i == 0:
insize = hidden_size
else:
insize = 2 * hidden_size
self.rnns.append(nn.GRU(insize, hidden_size, batch_first=True, bidirectional=True))
if hasattr(self, 'bns'):
self.bns.append(nn.BatchNorm1d(insize))
# The initial state is a trainable vector.
self.init_state = torch.nn.Parameter(torch.randn([2 * num_layers, 1, hidden_size]))
self.num_layers = num_layers
def forward(self, xs, xlens):
"""
We pack the padded sequences because it is especially important for bidirectional RNN to work properly. The RNN
in opposite direction can ignore the first few <PAD> tokens after packing.
Args:
xs (torch.FloatTensor, [batch_size, seq_length, dim_features]): A mini-batch of FBANK features.
xlens (torch.LongTensor, [batch_size]): Sequence lengths before padding.
Returns:
xs (PackedSequence): The packed output states.
"""
batch_size = xs.shape[0]
xs = self.embed(xs)
xs = rnn_utils.pack_padded_sequence(xs,
xlens,
batch_first=True,
enforce_sorted=False)
inits = self.init_state.repeat([1, batch_size, 1]) # [2 * num_layers, batch_size, hidden_size]
for i in range(self.num_layers):
if hasattr(self, 'bns'):
xs = self.apply_bn(xs, i)
xs, _ = self.rnns[i](xs, inits[i*2:(i+1)*2])
return xs
def apply_bn(self, xs, layer_id):
"""
BatchNorm forward pass.
Args:
xs (PackedSequence): Packed input sequence.
layer_id (integer): Which layer it is working on.
Returns:
xs (PackedSequence): Packed sequence after applying BatchNorm.
"""
# Unpack
xs, xlens = rnn_utils.pad_packed_sequence(
xs, batch_first=True) # [batch_size, padded_seq_length, C], [batch_size]
# Ignore zero paddings
batch_size = xs.shape[0]
xs = [xs[i, :xlens[i]] for i in range(batch_size)]
# Concatenate
xs = torch.cat(xs, dim=0) # [total_seq_length, C]
# Apply BatchNorm
xs = self.bns[layer_id](xs) # [total_seq_length, C]
# Repack
xlens = [0] + torch.cumsum(xlens, dim=0).tolist() # [batch_size + 1]
xs = [xs[xlens[i]:xlens[i+1]] for i in range(batch_size)]
xs = rnn_utils.pack_sequence(xs, enforce_sorted=False)
return xs
class MultiLayerGRUCell(nn.Module):
"""
Stack multiple GRU cells. For DecoderRNN.
"""
def __init__(self, input_size, hidden_size, num_layers, drop_p):
"""
Args:
input_size (integer): Input size of GRU cells.
hidden_size (integer): Hidden layer size of GRU cells.
num_layers (integer): Number of GRU layers.
drop_p (float): Probability to drop elements at Dropout layers.
"""
super(MultiLayerGRUCell, self).__init__()
self.cells = nn.ModuleList([])
for i in range(num_layers):
if i==0:
self.cells.append(nn.GRUCell(input_size, hidden_size))
else:
self.cells.append(nn.GRUCell(hidden_size, hidden_size))
self.dropouts = nn.ModuleList([nn.Dropout(drop_p) for _ in range(num_layers-1)])
self.num_layers = num_layers
def forward(self, x, h):
"""
One step forward pass.
Args:
x (torch.FloatTensor, [batch_size, input_size]): The input features of current time step.
h (torch.FloatTensor, [num_layers, batch_size, hidden_size]): The hidden state of previous time step.
Returns:
outputs (torch.FloatTensor, [num_layers, batch_size, hidden_size]): The hidden state of current time step.
"""
outputs = []
for i in range(self.num_layers):
if i==0:
x = self.cells[i](x, h[i])
else:
x = self.cells[i](self.dropouts[i-1](x), h[i])
outputs.append(x)
outputs = torch.stack(outputs, dim=0)
return outputs
class DecoderRNN(nn.Module):
"""
A decoder network which applies Luong attention (https://arxiv.org/abs/1508.04025).
"""
def __init__(self, n_words, hidden_size, num_layers, drop_p):
"""
Args:
n_words (integer): Size of the target vocabulary.
hidden_size (integer): Size of GRU cells.
num_layers (integer): Number of GRU layers.
drop_p (float): Probability to drop elements at Dropout layers.
"""
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embed = nn.Embedding(n_words, hidden_size)
self.cell = MultiLayerGRUCell(2 * hidden_size,
hidden_size,
num_layers=num_layers,
drop_p=drop_p)
# The initial states are trainable vectors.
self.init_h = torch.nn.Parameter(torch.randn([num_layers, 1, hidden_size]))
self.init_y = torch.nn.Parameter(torch.randn([1, hidden_size]))
self.attn_W = nn.Linear(2 * hidden_size, hidden_size)
self.attn_U = nn.Linear(hidden_size, hidden_size)
self.attn_v = nn.Linear(hidden_size, 1)
self.fc = nn.Linear(3 * hidden_size, hidden_size)
self.drop = nn.Dropout(drop_p)
self.classifier = nn.Linear(hidden_size, n_words)
def forward(self, encoder_states, ground_truths=None, beam_width=1):
"""
The forwarding behavior depends on if ground-truths are provided.
Args:
encoder_states (PackedSequence): Packed output state vectors from the EncoderRNN.
ground_truths (torch.LongTensor, [batch_size, padded_len_tgt]): Padded ground-truths.
beam_width (integer): Beam Search width. Beam Search is equivalent to Greedy Search when beam_width=1.
Returns:
* When ground-truths are provided, it returns cross-entropy loss. Otherwise it returns predicted word IDs
and the attention weights.
loss (float): The cross-entropy loss to maximizing the probability of generating ground-truths.
predictions (torch.FloatTensor, [batch_size, max_length]): The generated sentence.
all_attn_weights (torch.FloatTensor, [batch_size, max_length, length_of_encoder_states]): A list contains
attention alignment weights for the predictions.
"""
states, states_lengths = rnn_utils.pad_packed_sequence(
encoder_states, batch_first=True) # [batch_size, padded_len_src, 2 * hidden_size], [batch_size]
batch_size = states.shape[0]
h = self.init_h.repeat([1, batch_size, 1]) # [num_layers, batch_size, hidden_size]
y = self.init_y.repeat([batch_size, 1]) # [batch_size, hidden_size]
if ground_truths is None:
if beam_width == 1:
## Greedy Search
all_attn_weights = []
predictions = [torch.full([batch_size], 3, dtype=torch.int64).cuda()] # The first predicted word is always <s> (ID=3).
# Unrolling the forward pass
for time_step in range(100): # Empirically set max_length=100
x = predictions[-1] # [batch_size]
x = self.embed(x) # [batch_size, hidden_size]
h = self.cell(torch.cat([y, x], dim=-1), h) # [num_layers, batch_size, hidden_size]
attns, attn_weights = self.apply_attn(
states, states_lengths, h[-1]) # [batch_size, 2 * hidden_size], [batch_size, length_of_encoder_states]
y = torch.cat([attns, h[-1]], dim=-1) # [batch_size, 3 * hidden_size]
y = F.relu(self.fc(y)) # [batch_size, hidden_size]
all_attn_weights.append(attn_weights)
# Output
logits = self.classifier(y) # [batch_size, n_words]
samples = torch.argmax(logits, dim=-1) # [batch_size]
predictions.append(samples)
all_attn_weights = torch.stack(all_attn_weights, dim=1) # [batch_size, max_length, length_of_encoder_states]
predictions = torch.stack(predictions, dim=-1) # [batch_size, max_length]
return predictions, all_attn_weights
else:
## Beam search
assert batch_size == 1, ("Only Greedy Search (beam_width=1) supports batch size > 1.")
beams = [{'h':h,
'y':y,
'preds': [torch.full([1], 3, dtype=torch.int64).cuda()], # The first predicted word is always <s> (ID=3).
'attn_weights': [],
'scores':[]}]
for time_step in range(100): # Empirically set max_length=100
beams_update = []
for i in range(len(beams)):
b = beams[i]
if b['preds'][-1].item() == 2: # Stop predicting if </s> (ID=2) has been sampled.
beams_update.append(b)
continue
else:
x = b['preds'][-1] # [1]
x = self.embed(x) # [1, hidden_size]
b['h'] = self.cell(torch.cat([b['y'], x], dim=-1), b['h']) # [num_layers, 1, hidden_size]
attns, attn_weights = self.apply_attn(
states, states_lengths, b['h'][-1]) # [1, 2 * hidden_size], [1, length_of_encoder_states]
y = torch.cat([attns, b['h'][-1]], dim=-1) # [1, 3 * hidden_size]
y = F.relu(self.fc(y)) # [1, hidden_size]
b['y'] = y
b['attn_weights'] = b['attn_weights'] + [attn_weights]
# Output
scores = F.log_softmax(self.classifier(y), dim=-1) # [1, n_words]
scores, samples = torch.topk(scores, k=beam_width, dim=-1) # [1, beam_width], [1, beam_width]
for j in range(beam_width):
b_branch = b.copy()
b_branch['preds'] = b_branch['preds'] + [samples[:,j]]
b_branch['scores'] = b_branch['scores'] + [scores[:,j].item()]
beams_update.append(b_branch)
beams = beams_update
# Pick the best beams.
beams = sorted(beams, key=lambda b: np.mean(b['scores']), reverse=True)
beams = beams[:beam_width]
b = beams[0]
predictions = b['preds'] # list(LongTensor)
predictions = torch.stack(predictions, dim=-1) # [1, seq_length]
all_attn_weights = b['attn_weights'] # list(FloatTensor)
all_attn_weights = torch.stack(all_attn_weights, dim=1) # [1, seq_length, length_of_encoder_states]
return predictions, all_attn_weights
else:
## Compute loss
xs = self.embed(ground_truths[:, :-1]) # [batch_size, padded_len_tgt, hidden_size]
outputs = []
# Unrolling the forward pass
for time_step in range(xs.shape[1]):
h = self.cell(torch.cat([y, xs[:,time_step]], dim=-1), h) # [num_layers, batch_size, hidden_size]
attns, _ = self.apply_attn(states, states_lengths, h[-1]) # [batch_size, 2 * hidden_size]
y = torch.cat([attns, h[-1]], dim=-1) # [batch_size, 3 * hidden_size]
y = F.relu(self.fc(y)) # [batch_size, hidden_size]
outputs.append(y)
# Output
outputs = torch.stack(outputs, dim=1) # [batch_size, padded_len_tgt, hidden_size]
outputs = self.drop(outputs)
outputs = self.classifier(outputs) # [batch_size, padded_len_tgt, n_words]
mask = ground_truths[:, 1:].gt(0) # [batch_size, padded_len_tgt]
loss = nn.CrossEntropyLoss()(outputs[mask], ground_truths[:, 1:][mask])
return loss
def apply_attn(self, source_states, source_lengths, target_states):
"""
Apply attention.
Args:
source_states (torch.FloatTensor, [batch_size, padded_length_of_encoder_states, 2 * hidden_size]):
The padded encoder output states.
source_lengths (torch.LongTensor, [batch_size]): The length of encoder output states before padding.
target_state (torch.FloatTensor, [batch_size, hidden_size]): The decoder output state (of previous time step).
Returns:
attns (torch.FloatTensor, [batch_size, hidden_size]):
The attention result (weighted sum of Encoder output states).
attn_weights (torch.FloatTensor, [batch_size, padded_length_of_encoder_states]): The attention alignment weights.
"""
# A two-layer network used for project every pair of [source_state, target_state].
attns = self.attn_W(source_states) + self.attn_U(target_states).unsqueeze(1) # [batch_size, padded_len_src, hidden_size]
attns = self.attn_v(F.relu(attns)).squeeze(2) # [batch_size, padded_len_src]
# Create a mask with shape [batch_size, padded_len_src] to ignore the encoder states with <PAD> tokens.
mask = torch.arange(attns.shape[1]).unsqueeze(0).repeat([attns.shape[0], 1]).ge(source_lengths.unsqueeze(1))
attns = attns.masked_fill_(mask.cuda(), -float('inf')) # [batch_size, padded_len_src]
attns = F.softmax(attns, dim=-1) # [batch_size, padded_len_src]
attn_weights = attns.clone()
attns = torch.sum(source_states * attns.unsqueeze(-1), dim=1) # [batch_size, 2 * hidden_size]
return attns, attn_weights
class Seq2Seq(nn.Module):
"""
Sequence-to-sequence model at high-level view. It is made up of an EncoderRNN module and a DecoderRNN module.
"""
def __init__(self, target_size, hidden_size, encoder_layers, decoder_layers, drop_p=0., use_bn=True):
"""
Args:
target_size (integer): Target vocabulary size.
hidden_size (integer): Size of GRU cells.
encoder_layers (integer): EncoderRNN layers.
decoder_layers (integer): DecoderRNN layers.
drop_p (float): Probability to drop elements at Dropout layers.
use_bn (bool): Whether to insert BatchNorm in EncoderRNN.
"""
super(Seq2Seq, self).__init__()
self.encoder = EncoderRNN(hidden_size, encoder_layers, use_bn)
self.decoder = DecoderRNN(target_size, hidden_size, decoder_layers, drop_p)
def forward(self, xs, xlens, ys=None, beam_width=1):
"""
The forwarding behavior depends on if ground-truths are provided.
Args:
xs (torch.LongTensor, [batch_size, seq_length, dim_features]): A mini-batch of FBANK features.
xlens (torch.LongTensor, [batch_size]): Sequence lengths before padding.
ys (torch.LongTensor, [batch_size, padded_length_of_target_sentences]): Padded ground-truths.
beam_width (integer): Beam Search width. Beam Search is equivalent to Greedy Search when beam_width=1.
Returns:
* When ground-truths are provided, it returns cross-entropy loss. Otherwise it returns predicted word IDs
and the attention weights.
loss (float): The cross-entropy loss to maximizing the probability of generating ground-truth.
predictions (torch.FloatTensor, [batch_size, max_length]): The generated sentence.
attn_weights (torch.FloatTensor, [batch_size, max_length, length_of_encoder_states]): A list contains
attention alignment weights for the predictions.
"""
if ys is None:
predictions, attn_weights = self.decoder(self.encoder(xs, xlens), beam_width=beam_width)
return predictions, attn_weights
else:
loss = self.decoder(self.encoder(xs, xlens), ys)
return loss