-
Notifications
You must be signed in to change notification settings - Fork 8
/
data.py
148 lines (125 loc) · 5 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
""" Load and preprocess data.
"""
import torch
import torchaudio
import os
import pandas as pd
import numpy as np
import torch.nn.utils.rnn as rnn_utils
from torch.utils.data import Dataset, DataLoader
class ASR(Dataset):
"""
Stores a Pandas DataFrame in __init__, and reads and preprocesses examples in __getitem__.
"""
def __init__(self, split, augmentation):
"""
Args:
augmentation (bool): Apply SpecAugment to training data or not.
"""
self.df = pd.read_csv('%s.csv' % split.upper())
self.tokenizer = torch.load('tokenizer.pth')
self.augmentation = (augmentation and (split.upper() == 'TRAIN'))
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
"""
Returns:
x (torch.FloatTensor, [seq_length, dim_features]): The FBANK features.
y (torch.LongTensor, [n_tokens]): The label sequence.
"""
x, y = self.df.iloc[idx]
x, sample_rate = torchaudio.load(x)
# Compute filter bank features
x = torchaudio.compliance.kaldi.fbank(x, num_mel_bins=80, sample_frequency=sample_rate) # [n_windows, 80]
# CMVN
x = self.cmvn(x)
# SpecAugment
if self.augmentation:
x = self.specaugment(x)
# Stack every 3 frames and down-sample frame rate by 3, following https://arxiv.org/abs/1712.01769.
x = x[:(x.shape[0]//3)*3].view(-1,3*80) # [n_windows, 80] --> [n_windows//3, 240]
# Tokenization
y = self.tokenizer.encode(y)
return x, y
def cmvn(self, x):
"""
Cepstral mean and variance normalization.
"""
mean = torch.mean(x, dim=0) # [80]
x = x - mean # [n_windows, 80]
std = torch.std(x, dim=0) # [80]
x = x / (std + 1e-10) # [n_windows, 80]
return x
def specaugment(self, x, F=15, mF=2, T=70, p=0.2, mT=2):
# TODO: Allow user to tune these parameters in config file.
"""
SpecAugment (https://arxiv.org/abs/1904.08779). We discard the time warping policy for simplicity.
Args:
x (torch.FloatTensor, [seq_length, dim_features]): The FBANK features.
F, mF, T, p, mT: The parameters referred in SpecAugment paper.
"""
x = x.T # [n_windows, 80] --> [80, n_windows]
# Freq. masking
for _ in range(mF):
x = torchaudio.transforms.FrequencyMasking(F)(x)
# Time masking
Tclamp = min(T, int(p * x.shape[1]))
for _ in range(mT):
x = torchaudio.transforms.TimeMasking(Tclamp)(x)
return x.T
def generateBatch(self, batch):
"""
Generate a mini-batch of data. For DataLoader's 'collate_fn'.
Args:
batch (list(tuple)): A mini-batch of (FBANK features, label sequences) pairs.
Returns:
xs (torch.FloatTensor, [batch_size, (padded) seq_length, dim_features]): A mini-batch of FBANK features.
xlens (torch.LongTensor, [batch_size]): Sequence lengths before padding.
ys (torch.LongTensor, [batch_size, (padded) n_tokens]): A mini-batch of label sequences.
"""
xs, ys = zip(*batch)
xlens = torch.tensor([x.shape[0] for x in xs])
xs = rnn_utils.pad_sequence(xs, batch_first=True) # [batch_size, (padded) seq_length, dim_features]
ys = rnn_utils.pad_sequence(ys, batch_first=True) # [batch_size, (padded) n_tokens]
return xs, xlens, ys
def load(split, batch_size, workers=0, augmentation=False):
"""
Args:
split (string): Which of the subset of data to take. One of 'train', 'dev' or 'test'.
batch_size (integer): Batch size.
workers (integer): How many subprocesses to use for data loading.
augmentation (bool): Apply SpecAugment to training data or not.
Returns:
loader (DataLoader): A DataLoader can generate batches of (FBANK features, FBANK lengths, label sequence).
"""
assert split in ['train', 'dev', 'test']
dataset = ASR(split, augmentation)
print ("%s set size:"%split.upper(), len(dataset))
loader = DataLoader(dataset,
batch_size=batch_size,
collate_fn=dataset.generateBatch,
shuffle=True,
num_workers=workers,
pin_memory=True)
return loader
def inspect_data():
"""
Test the functionality of input pipeline and visualize a few samples.
"""
import matplotlib.pyplot as plt
BATCH_SIZE = 64
SPLIT = 'train'
loader = load(SPLIT, BATCH_SIZE)
tokenizer = torch.load('tokenizer.pth')
print ("Vocabulary size:", len(tokenizer.vocab))
print (tokenizer.vocab)
xs, xlens, ys = next(iter(loader))
print (xs.shape, ys.shape)
for i in range(BATCH_SIZE):
print (ys[i])
print (tokenizer.decode(ys[i]))
plt.figure()
plt.imshow(xs[i].T)
plt.show()
if __name__ == '__main__':
inspect_data()