-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_data.py
57 lines (47 loc) · 1.97 KB
/
check_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import random
import matplotlib.pyplot as plt
from utils.data.dataloader import create_dataloader
from utils.misc import load_config, draw, unnormalize
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--cfg', type=str, required=True,
help="config file")
parser.add_argument('--split', type=str, default='train',
choices=['train', 'val'], help="either `train` or `val`")
args = parser.parse_args()
cfg = load_config(args.cfg)
seed = random.randint(0, 9999)
dataloader_0 = create_dataloader(cfg['%s_csv' % args.split],
batch_size=cfg.batch_size,
image_size=cfg.input_size,
augment=False,
shuffle=True,
seed=seed)
dataloader_1 = create_dataloader(cfg['%s_csv' % args.split],
batch_size=cfg.batch_size,
image_size=cfg.input_size,
augment=True,
shuffle=True,
seed=seed)
dataiter_0 = iter(dataloader_0)
dataiter_1 = iter(dataloader_1)
while True:
plt.figure(figsize=(15, 7))
images, annos = next(dataiter_0)
image = unnormalize(images[0])
image = draw(image, annos[0], cfg.num_classes)
plt.subplot(1, 2, 1)
plt.title("w/o augmentation")
plt.imshow(image.permute([1, 2, 0]))
images, annos = next(dataiter_1)
image = unnormalize(images[0])
image = draw(image, annos[0], cfg.num_classes)
plt.subplot(1, 2, 2)
plt.title("w/ augmentation")
plt.imshow(image.permute([1, 2, 0]))
plt.show()
plt.close()
if __name__ == '__main__':
main()