-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasures_of_disease_in_epidemiology_2024_bjk.rmd
1885 lines (1126 loc) · 55.4 KB
/
measures_of_disease_in_epidemiology_2024_bjk.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Measures of Disease in Clinical Epidemiology<br/>"
subtitle: "<hr/>"
author: "Brendan J. Kelly, MD, MS"
institute: "Infectious Diseases & Epidemiology<br/><br/>![](penn_logos/Penn-Shield-Logotype-White-over-Blue-RGB-Expanded.svg){width=160px}"
date: "updated: `r format(Sys.Date(), '%d %B %Y')`"
output:
xaringan::moon_reader:
self_contained: true
css: xaringan-themer-inferno-grids-fade.css
lib_dir: libs
chakra: libs/remark-latest.min.js
seal: false
nature:
ratio: 16:9
highlightStyle: github
highlightLines: true
countIncrementalSlides: false
slideNumberFormat: "%current%"
---
exclude: true
```{r setup, include=FALSE}
options(htmltools.dir.version = FALSE)
xaringan::summon_remark()
```
```{r xaringan-tile-view, echo=FALSE}
xaringanExtra::use_tile_view()
xaringanExtra::use_webcam()
xaringanExtra::use_tachyons()
xaringanExtra::use_animate_css()
xaringanExtra::use_share_again()
#xaringanExtra::use_scribble(pen_color = "#56106E")
```
---
class: top left hide-count
background-image: url(img/Pneumocystis_jirovecii_AO_AL_wikipedia_crop.png)
background-size: cover
.move-top20[
.title-text[<span style="font-size:0.8em;">Measures of Disease in<br>Clinical Epidemiology</span>]
]
.callout-url-leftcorner[
.title-nametext[
Brendan J. Kelly, MD, MS
Infectious Diseases, Epidemiology & Microbiology
University of Pennsylvania
19 November 2024
]
]
.footnote-right[
<span style='color:white'>image: Federica Viazzi "Microscopy image of <i>P. jirovecii</i>" [(Wikipedia)](https://en.wikipedia.org/wiki/Pneumocystis_jirovecii#/media/File:Pneumocystis_jirovecii_AO_AL.jpg)</span>
]
---
## Disclosures
.pad-left[
- No conflicts of interest.
]
---
## Learning Objectives
.pad-left[
- Measures of disease occurrence: use population data to describe health and disease.
- Key concepts -- explain the meaning of:
- data types and terminology
- prevalence
- incidence (<ins>warning</ins>: multiple types)
- relative risk (RR)
- odds ratio (OR)
- Implementation: prevalence, incidence, RR, and OR from study data (2x2 tables!).
]
---
## Why Do I Care? ...
.pad-left[
- Why use these tools (prevalence, incidence, RR, OR)?
- inform differential diagnoses & counsel patients (<ins>your job</ins>)
- design public health interventions & direct new diagnostics/therapies (society!)
- understand distributions and determinants of diseases (science!)
]
---
## ... What Do I Need to Know for the Test?
.pad-left[
.grey-text[
- Why use these tools (prevalence, incidence, RR, OR)?
- inform differential diagnoses & counsel patients (<ins>your job</ins>)
- design public health interventions & direct new diagnostics/therapies (society!)
- understand distributions and determinants of diseases (science!)
]
- How to use these tools:
- precise definitions
(e.g., RR vs OR, cumulative incidence vs incidence density)
- a bit of arithmetic
]
---
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-a animated flipInY"><div>Data Types<br>&<br>Distributions</div></div>
</div>
---
layout: false
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-a"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-b animated flipInX"><div>Case from 1981</div></div>
</div>
---
layout: false
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-a"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-b"><div>Case from 1981</div></div>
<div class="extension-tile gridset-c animated bounceInDown"><div>Prevalence</div></div>
</div>
---
layout: false
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-a"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-b"><div>Case from 1981</div></div>
<div class="extension-tile gridset-c"><div>Prevalence</div></div>
<div class="extension-tile gridset-d animated fadeInRight"><div>Incidence</div></div>
</div>
---
layout: false
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-a"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-b"><div>Case from 1981</div></div>
<div class="extension-tile gridset-c"><div>Prevalence</div></div>
<div class="extension-tile gridset-d"><div>Incidence</div></div>
<div class="extension-tile gridset-e animated bounceInUp"><div>Inference from<br>Exposures &<br>Outcomes</div></div>
</div>
---
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-a"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-b"><div>Case from 1981</div></div>
<div class="extension-tile gridset-c"><div>Prevalence</div></div>
<div class="extension-tile gridset-d"><div>Incidence</div></div>
<div class="extension-tile gridset-e"><div>Inference from<br>Exposures &<br>Outcomes</div></div>
<div class="extension-tile gridset-f animated slideInLeft"><div>Relative Risk<br>&<br>Odds Ratios</div></div>
</div>
---
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-a animated flipInY"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-grey"><div>Case from 1981</div></div>
<div class="extension-tile gridset-grey"><div>Prevalence</div></div>
<div class="extension-tile gridset-grey"><div>Incidence</div></div>
<div class="extension-tile gridset-grey"><div>Inference from<br>Exposures &<br>Outcomes</div></div>
<div class="extension-tile gridset-grey"><div>Relative Risk<br>&<br>Odds Ratios</div></div>
</div>
---
## Data Types
.pad-left[
- __Dichotomous__: binary 0 / 1, true / false
- the focus of most methods in this course (e.g., pneumonia, MI)
- __Continuous__: real values, infinite scale
- discussed in diagnostics lecture (e.g., age, height)
- __Nominal__: discrete data
- categories without intrinsic order (e.g., state)
- __Ordinal__: discrete data
- categories with intrinsic order (e.g., age category)
]
---
## How to Characterize Continuous Data
.pad-left[
- Pair a measure of central tendency with a measure of dispersion:
- mean and SD (both affected by outliers)
- median and IQR
- In doing so, account for <ins>uncertainty</ins> in measures.
]
---
## Characterize Continuous Data: Central Tendency
.pad-left[
- **Mean ( $\mu$)**:
$$\mu=\frac{1}{N}\sum_{i=1}^Nx_i$$
- **Median**: middle value, when values ordered / ranked
- **Mode**: most frequently occurring value
]
<p style="text-align: center;"><mark> (you do <strong>NOT</strong> need to memorize these formulas) </mark></p>
---
## Characterize Continuous Data: Variation/Spread
.pad-left[
- **Standard deviation (SD or $\sigma$)**:
$$\sigma=\sqrt{\frac{1}{N}*\sum_{i=1}^N(x_i - \mu)^2}$$
- **Interquartile range (IQR)** depends on ranking the values:
- the first quartile is the "middle" value of the first half of the ordered set
- the third quartile is the "middle" value of the second half of the ordered set
- IQR is the range of values between first and third quartiles
]
<p style="text-align: center;"><mark> (you do <strong>NOT</strong> need to memorize these formulas) </mark></p>
---
## Describing Continuous Data
.pad-left[
- "Normally distributed": data well characterized by **mean** and **standard deviation (SD)**.
- “Non-parametric” data have a mean and standard deviation, but these parameters do NOT characterize the data well...
]
---
## "Normally Distributed" Continuous Data
```{r parametric_data, echo=FALSE, warning=FALSE, message=FALSE, fig.height=6, fig.width=12, fig.align='center', fig.retina=2}
library(tidyverse)
library(NHANES)
library(ggtext)
set.seed(16)
NHANES |>
as_tibble() |>
filter(Age >= 18) |>
mutate(Gender = paste0("Gender: ", Gender)) |>
ggplot(data = _) +
geom_histogram(aes(x = Height, fill = Gender), colour = "black") +
scale_fill_viridis_d(option = "turbo", begin = 0.15, end = 0.95) +
theme_classic() +
theme(legend.position = 'none', line = element_line(colour = "black"), text = element_text(size = 22), plot.title = ggtext::element_markdown(size = 22), axis.title.x = ggtext::element_markdown(size = 22)) +
labs(title = "Height (cm) from a Population Survey of US Citizens", subtitle = "7,481 subjects with age >= 18 years", x = "Height (cm)", y = "Subject Count") +
facet_wrap(facets = ~ Gender, scales = "free_x")
```
.footnote[[CDC National Health and Nutrition Examination Survey (NHANES)](https://www.cdc.gov/nchs/nhanes/index.htm)]
---
## "Non-Parametric" Continuous Data: Skewed
```{r skewed_data, echo=FALSE, warning=FALSE, message=FALSE, fig.height=6, fig.width=12, fig.align='center', fig.retina=2}
library(tidyverse)
library(NHANES)
library(ggtext)
set.seed(16)
NHANES |>
as_tibble() |>
filter(Age >= 18) |>
mutate(Gender = paste0("Gender: ", Gender)) |>
ggplot(data = _) +
geom_histogram(aes(x = BMI, fill = Gender), colour = "black") +
scale_fill_viridis_d(option = "turbo", begin = 0.15, end = 0.95) +
theme_classic() +
theme(legend.position = 'none', line = element_line(colour = "black"), text = element_text(size = 22), plot.title = ggtext::element_markdown(size = 22), axis.title.x = ggtext::element_markdown(size = 22)) +
labs(title = "BMI (kg/m^2^) from a Population Survey of US Citizens", subtitle = "7,481 subjects with age >= 18 years", x = "BMI (kg/m^2^)", y = "Subject Count") +
facet_wrap(facets = ~ Gender, scales = "free_x")
```
.footnote[[CDC National Health and Nutrition Examination Survey (NHANES)](https://www.cdc.gov/nchs/nhanes/index.htm)]
---
## "Non-Parametric" Continuous Data: Uniform
```{r uniform_data, echo=FALSE, warning=FALSE, message=FALSE, fig.height=6, fig.width=12, fig.align='center', fig.retina=2}
library(tidyverse)
library(NHANES)
library(ggtext)
set.seed(16)
NHANES |>
as_tibble() |>
#filter(Age >= 18) |>
mutate(Gender = paste0("Gender: ", Gender)) |>
ggplot(data = _) +
geom_histogram(aes(x = Age, fill = Gender), colour = "black") +
scale_fill_viridis_d(option = "turbo", begin = 0.15, end = 0.95) +
theme_classic() +
theme(legend.position = 'none', line = element_line(colour = "black"), text = element_text(size = 22), plot.title = ggtext::element_markdown(size = 22), axis.title.x = ggtext::element_markdown(size = 22)) +
labs(title = "Age (years) from a Population Survey of US Citizens", subtitle = " ", x = "Age (years)", y = "Subject Count") +
facet_wrap(facets = ~ Gender, scales = "free_x")
```
.footnote[[CDC National Health and Nutrition Examination Survey (NHANES)](https://www.cdc.gov/nchs/nhanes/index.htm)]
---
## Describing Continuous Data
.pad-left[
- "Normally distributed": data well characterized by **mean** and **standard deviation (SD)**.
- “Non-parametric” data have a mean and standard deviation, but these parameters do NOT characterize the data well:
- **skewed** data: distribution not symmetric around a central value
- **uniform** data: distributed with equal probability of each value
- For "non-parametric" data, we prefer to use **median** and **interquartile range (IQR)** to describe the distribution of a continuous variable because these are less affected by extreme values.
- You can always calculate mean and SD from continuous data. But these parameters might not represent the data well.
]
---
## Dichotomizing Continuous Data
.pad-left[
- Using a threshold to transform continuous data into dichotomous data means <mark>losing information about uncertainty</mark>.
- This is on top of the fundamental uncertainty we face with any epidemiologic measure: does the measured population represent the population of interest?
- See the diagnosis lecture: for example, threshold of oxygen saturation (or $\beta$-D glucan) to diagnose _Pneumocystis_ pneumonia (PCP) means trade-off between sensitivity and specificity.
]
---
## Dichotomania
.pad-left[
- As we discuss prevalence, incidence, RR, and OR, we focus on <ins>dichotomous</ins> exposures and outcomes.
- Remember -- with dichotomous data:
- information about uncertainty is lost
- misclassification is a risk
- But we're doing it anyway 😀 ... why?
- Medicine focuses on dichotomous diagnostic and treatment decisions.
.footnote[[Altman & Royston _BMJ_ 2006](https://www.bmj.com/content/332/7549/1080.1.full)]
]
---
## What About Regression?
.pad-left[
- As we discuss prevalence, incidence, RR, and OR, we focus on <ins>dichotomous</ins> exposures and outcomes.
- Regression methods account for different data types:
- linear models: continuous outcomes
- generalized linear models: dichotomous, nominal, ordinal, etc outcomes
- can incorporate different exposure data types & multiple exposures
- Regression methods are <u>beyond the scope of this course</u>.
.footnote[[Altman & Royston _BMJ_ 2006](https://www.bmj.com/content/332/7549/1080.1.full)]
]
---
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-grey"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-b animated flipInX"><div>Case from 1981</div></div>
<div class="extension-tile gridset-grey"><div>Prevalence</div></div>
<div class="extension-tile gridset-grey"><div>Incidence</div></div>
<div class="extension-tile gridset-grey"><div>Inference from<br>Exposures &<br>Outcomes</div></div>
<div class="extension-tile gridset-grey"><div>Relative Risk<br>&<br>Odds Ratios</div></div>
</div>
---
## HIV Pandemic: MMWR June 5, 1981
.center[
<img src="figs/hiv_timeline_mmwr_1981.png" alt="MMWR 1981" style="box-shadow: 3px 3px 3px gray;">
]
---
exclude: true
background-image: url(figs/cover_mmwr_1981.jpg)
background-size: 750px
background-position: 50% 50%
## HIV Pandemic: MMWR June 5, 1981
---
## HIV Pandemic: MMWR June 5, 1981
.bg-washed-gray.b--dark-gray.ba.bw2.br3.shadow-5.ph4.mt5.f4[
All the above observations suggest the possibility of a <mark>cellular-immune dysfunction related to a common exposure that predisposes individuals to opportunistic infections such as pneumocystosis and candidiasis</mark>. Although the role of CMV infection in the pathogenesis of pneumocystosis remains unknown, the possibility of _P. carinii_ infection must be carefully considered in a differential diagnosis for previously healthy homosexual males with dyspnea and pneumonia.
.tr[
— Gottlieb MS et al <ins>MMWR</ins> 1981
]]
---
## HIV Pandemic: Stigma & Discrimination
.pull-left[
- Socially vulnerable groups often at higher infection risk:
- HIV, COVID-19
- how we name infectious diseases has exacerbated stigma
- _bad epidemiology exacerbates stigma_
- Prejudice is used to gain political power:
- homophobia in the 1980s
- anti-Asian racism in the 2020s
]
.pull-right[
<img src="img/radiolab_ashes_on_the_lawn_tall.png" alt="Radiolab" style="box-shadow: 3px 3px 3px gray;">
]
.footnote[[Radiolab "The Ashes on the Lawn"](https://radiolab.org/podcast/ashes-lawn)]
---
## COVID-19 Pandemic: Stigma & Discrimination
.pull-left[
- As we proceed in course, think about causal versus proxy variables. For example:
- Race is not a proxy for biology.
- Race exerts large effects on health: structural racism & direct / interpersonal racism
- High-risk work, access to care, and social networks are some ways social determinants and racism impact health.
]
.pull-right[
<img src="img/covid_disparities_discrimination.png" alt="Radiolab" style="box-shadow: 3px 3px 3px gray;">
]
.footnote[Bilal U et al _Lancet Reg Health Am_ 2022;<br> Chastain DB et al _NEJM_ 2020; Lee JH _NEJM_ 2021]
---
## Case from 1981... _Pneumocystis_ pneumonia?
.pad-left[
- 36-year-old man presents with a 4-month history of fever, dyspnea, and cough.
- What is his diagnosis? Does he have _Pneumocystis_ pneumonia (PCP)?
- As you collect data (history, vital signs, physical exam, laboratory test values, radiology results), you are making inferences about the diagnosis based on __associations__ between your findings and disease states.
]
---
## Case from 1981... _Pneumocystis_ pneumonia?
.pad-left[
- Differential diagnosis must be grounded in understanding:
- distributions of disease: we'll learn about **prevalence** & **incidence**
- determinants of disease: we'll learn **2x2 tables** to relate exposures and outcomes
- PCP is a fungal pneumonia caused by _Pneumocystis jirovecii_ (formerly _Pneumocystis carinii_), which causes dyspnea, hypoxemia, and nonproductive cough, and eventually cystic lung changes.
- In 1981, _Pneumocystis_ was known to be a low <ins>prevalence</ins> disease.
- New data would show an increasing <ins>incidence</ins>.
]
---
## Case from 1981... _Pneumocystis_ pneumonia?
.pad-left[
- Does our patient have _Pneumocystis_ pneumonia (PCP)?
- How is the distribution of _Pneumocystis_ pneumonia changing?
- What are the determinants of _Pneumocystis_ pneumonia?
<br/>
.center[<mark>Note: questions depend on <strong>dichotomous</strong> definition of disease (yes/no <em>Pneumocystis</em>)</mark>]
]
---
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-grey"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-grey"><div>Case from 1981</div></div>
<div class="extension-tile gridset-c animated flipInY"><div>Measuring<br>Disease<br>Occurrence</div></div>
<div class="extension-tile gridset-grey"><div>Incidence</div></div>
<div class="extension-tile gridset-grey"><div>Inference from<br>Exposures &<br>Outcomes</div></div>
<div class="extension-tile gridset-grey"><div>Relative Risk<br>&<br>Odds Ratios</div></div>
</div>
---
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-grey"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-grey"><div>Case from 1981</div></div>
<div class="extension-tile gridset-c animated flipInY"><div>Prevalence</div></div>
<div class="extension-tile gridset-grey"><div>Incidence</div></div>
<div class="extension-tile gridset-grey"><div>Inference from<br>Exposures &<br>Outcomes</div></div>
<div class="extension-tile gridset-grey"><div>Relative Risk<br>&<br>Odds Ratios</div></div>
</div>
---
## Prevalence
.pad-left[
- How common is _Pneumocystis_ pneumonia (PCP)?
- Prevalence:
- number with the disease / number in specified population
- **point prevalence**: at a specific point in time
- **period prevalence**: during a given period (e.g., 12-month prevalence)
- a proportion (unitless, ranges from 0-1)
- numerator includes all people who have the disease, both new and ongoing cases
- represents a <ins>cross-sectional</ins> “snapshot” of the population
]
---
## Prevalence of _Pneumocystis_ pneumonia
.pad-left[
- In 1967, CDC became the sole supplier of pentamidine in the United States and began collecting data on cases of PCP:
- period prevalence published in 1974<sup>*</sup>: 579 cases (194 confirmed) over 3 years
- what’s the denominator?
- what’s the prevalence?
- __Point prevalence__ of _Pneumocystis_ would be vanishingly small given limited duration of disease.
- From 1967-1974, even the __period prevalence__ was very small.
.footnote[[*] Walzer PD et al _Annals Int Med_ 1974]
]
---
## Point Prevalence versus Period Prevalence
.pad-left[
- To understand the difference between point and period prevalence, let's imagine a cohort of people living with HIV/AIDS at risk for _Pneumocystis_:
- 50 high-risk subjects enrolled at the start of a two-year observation period
- cases of PCP each receive 3 weeks of antibiotic treatment (red on plot)
- incomplete follow-up (grey on plot)
- some subjects started on _Pneumocystis_ prophylaxis (blue on plot)
]
---
## Cohort at Risk for _Pneumocystis_
```{r pcp_study, echo=FALSE, warning=FALSE, message=FALSE, fig.height=7, fig.width=12, fig.align='center', fig.retina=2}
library(tidyverse)
set.seed(16)
tibble(subject_id = factor(seq(50)),
enrollment = rep(0,50),
exit = sample(x = c(rep(2,35),runif(n = 15, min = 1.7, max = 2)), size = 50, replace = FALSE),
pcp_start = c(rep(NA,5),1.2,rep(NA,5),0.4,rep(NA,4),1.1,rep(NA,6),0.8,rep(NA,4),1.4,NA,0.3,rep(NA,3),1.0,rep(NA,6),0.1,rep(NA,4),0.9,rep(NA,3)),
pcp_stop = pcp_start + 0.0577,
ppx_start = c(rep(NA,4),1.5,rep(NA,5),1.6,rep(NA,6),1.4,rep(NA,3),1.7,rep(NA,3),1.4,rep(NA,1),1.3,rep(NA,2),1.55,rep(NA,9),1.2,rep(NA,5),1.5,rep(NA,3))) %>%
group_by(subject_id) %>%
nest() %>%
mutate(exit_adjust = map_dbl(data, ~ ifelse(is.na(.x[["pcp_start"]]) & is.na(.x[["ppx_start"]]), sample(x = seq(1.5,2,0.1), size = 1), .x[["exit"]]))) %>%
unnest(cols = c(data)) %>%
ungroup() %>%
mutate(ppx_stop = exit_adjust) %>%
group_by(subject_id) %>%
mutate(follow_start1 = enrollment,
follow_stop1 = min(pcp_start, ppx_start, exit_adjust, na.rm = TRUE),
follow_start2 = pcp_stop,
follow_stop2 = min(ppx_start, exit_adjust, na.rm = TRUE)) %>%
ungroup() %>%
ggplot(data = .) +
geom_segment(aes(x = enrollment, xend = exit_adjust, y = subject_id, yend = subject_id), colour = "grey", size = 1) +
geom_segment(aes(x = pcp_start, xend = pcp_stop, y = subject_id, yend = subject_id), colour = "red", size = 1) +
geom_point(aes(x = pcp_start, y = subject_id), colour = "red", size = 2) +
geom_segment(aes(x = ppx_start, xend = ppx_stop, y = subject_id, yend = subject_id), colour = "blue", size = 1, size = 2) +
labs(x = "Duration of Study Enrollment (years)", y = "Subject ID") +
theme_classic() +
theme(text = element_text(size = 22), axis.text.y = element_text(size = 10)) -> p
```
```{r print_pcp_study, echo=FALSE, warning=FALSE, message=FALSE, fig.height=7, fig.width=12, fig.align='center', fig.retina=2, dependson= "pcp_study"}
p
```
---
## Cohort at Risk for _Pneumocystis_
```{r print_pcp_study_label_case, echo=FALSE, warning=FALSE, message=FALSE, fig.height=7, fig.width=12, fig.align='center', fig.retina=2, dependson= "pcp_study"}
p +
annotate(geom = "text", x = 0.1, y = 42, label = "Case &\nTreatment")
```
---
## Cohort at Risk for _Pneumocystis_
```{r print_pcp_study_label_followup, echo=FALSE, warning=FALSE, message=FALSE, fig.height=7, fig.width=12, fig.align='center', fig.retina=2, dependson= "pcp_study"}
p +
annotate(geom = "text", x = 1.9, y = 3, label = "End of Follow-up")
```
---
## Cohort at Risk for _Pneumocystis_
```{r print_pcp_study_label_prophylaxis, echo=FALSE, warning=FALSE, message=FALSE, fig.height=7, fig.width=12, fig.align='center', fig.retina=2, dependson= "pcp_study"}
p +
annotate(geom = "text", x = 1.9, y = 22, label = "Prophylactic\nAntibiotic")
```
---
## Cohort at Risk: Point Prevalence
```{r pcp_point_prev, echo=FALSE, warning=FALSE, message=FALSE, fig.height=7, fig.width=12, fig.align='center', fig.retina=2, dependson= "pcp_study"}
p + annotate("rect", xmin=0.9, xmax=0.91, ymin=0, ymax=Inf, alpha=0.6, fill="purple")
#+ geom_vline(aes(xintercept = 0.9), colour = "purple", size = 3, alpha = 0.4)
```
---
## Cohort at Risk: Period Prevalence
```{r pcp_period_prev, echo=FALSE, warning=FALSE, message=FALSE, fig.height=7, fig.width=12, fig.align='center', fig.retina=2, dependson= "pcp_study"}
p + annotate("rect", xmin=0.9, xmax=1.2, ymin=0, ymax=Inf, alpha=0.6, fill="purple")
```
---
## Prevalence
.pad-left[
- Prevalence is **NOT** the same as risk.
- Prevalence numerator includes all people who have the disease, both new and ongoing cases, so represents a cross-sectional “snapshot” of the population.
- Prevalence does **NOT** estimate the risk of developing the disease because <mark>prevalence does **NOT** fully account for time </mark> (are the measured cases old cases or new cases?).
- Prevalence can provide a useful snapshot of the burden of disease.
]
---
## Reflection Question
.pad-left[
How can an infection have high prevalence if it occurs infrequently?
- (A) the infection is rapidly fatal
- (B) the infection rapidly resolves
- (C) a few children get the infection every year, but the infection persists for the rest of their lives
- (D) the infection results in lifelong protective immunity
]
---
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-grey"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-grey"><div>Case from 1981</div></div>
<div class="extension-tile gridset-grey"><div>Prevalence</div></div>
<div class="extension-tile gridset-d animated flipInX"><div>Measuring<br>Disease<br>Occurrence</div></div>
<div class="extension-tile gridset-grey"><div>Inference from<br>Exposures &<br>Outcomes</div></div>
<div class="extension-tile gridset-grey"><div>Relative Risk<br>&<br>Odds Ratios</div></div>
</div>
---
class: full-screen hide-count
<div class="grid-3-2">
<div class="extension-tile gridset-grey"><div>Data Types<br>&<br>Distributions</div></div>
<div class="extension-tile gridset-grey"><div>Case from 1981</div></div>
<div class="extension-tile gridset-grey"><div>Prevalence</div></div>
<div class="extension-tile gridset-d animated flipInX"><div>Incidence</div></div>
<div class="extension-tile gridset-grey"><div>Inference from<br>Exposures &<br>Outcomes</div></div>
<div class="extension-tile gridset-grey"><div>Relative Risk<br>&<br>Odds Ratios</div></div>
</div>
---
## Case from 1981... _Pneumocystis_ pneumonia?
.pull-left[
<img src="figs/nejm_combined.png" alt="Masur & Gottlieb" style="box-shadow: 3px 3px 3px gray;">
]
.pull-right[
<br/>
- new _Pneumocystis_ cases (NYC<sup>1</sup>): 13 cases over 21 months
- new _Pneumocystis_ cases (LA<sup>2</sup>): 5 cases over 7 months
- concurrent opportunistic infections:
- CMV
- _Candida_
- Kaposi's sarcoma
]
.footnote[[1,2] Masur H et al _NEJM_ 1981; Gottlieb MS et al _NEJM_ 1981]
---
## Incidence
.pad-left[
- _Pneumocystis_ pneumonia (PCP) is occurring more frequently...
- Incidence: occurrence of new cases over a given period of time.
- **cumulative incidence**:
$$cumulative\ incidence = \frac{{new\ cases}}{persons\ at\ risk\\at\ start\ time\ interval}$$
- **incidence density**: (more precise)
$$incidence\ density = \frac{new\ cases}{person\ time\\at\ risk}$$
]
---
## Cumulative Incidence
.pad-left[
- Cumulative incidence:
- must specify population consisting of at-risk individuals
- must specify a time period of observation
- <ins>numerator</ins> = all new cases during a specified time period
- <ins>denominator</ins> = all individuals at risk in the specified population at the start of the specified time period (does NOT account for deaths due to other causes)
- ranges from 0 to 1 (a.k.a., “incidence proportion”)
- like prevalence, is a proportion and therefore has no units (but only makes sense if you specify the time period of observation, e.g., % per year)
]
---
## Incidence Density
.pad-left[
- Incidence density:
- in a specified population consisting of at risk individuals over a specified period of observation, more precisely quantifies the person-time at risk
- <ins>numerator</ins> = all new cases during a specified time period
- <ins>denominator</ins> = the sum, over all individuals in the population, of time at risk until the event of interest, death, loss to follow-up, the end of the study, or when they are no longer at risk for whatever reason
- not a proportion; range depends on the units of person-time (0 to infinity)
- <mark>accounts for death from other causes!</mark>