-
Notifications
You must be signed in to change notification settings - Fork 0
/
gr1.tex
5568 lines (5323 loc) · 191 KB
/
gr1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Chapter 1, Section 1 _Linear Algebra_ Jim Hefferon
% http://joshua.smcvt.edu/linearalgebra
% 2001-Jun-09
\chapter{Linear Systems}
\section{Solving Linear Systems}
Systems of linear equations are common in science and mathematics.
These two examples from high school science \cite{Onan}
give a sense of how they arise.
The first example is from
\hypertarget{ex:Statics}{Statics}.\index{Statics problem}
Suppose that we have three objects,
we know that one has a mass of 2~kg,
and we want to find the two unknown masses.
Suppose further that
experimentation with a meter stick produces these two balances.
\begin{center}
\includegraphics{ch1.1}
\qquad
\includegraphics{ch1.2}
\end{center}
For the masses to balance we must have that
the sum of moments on the left equals the sum of moments on
the right, where the moment of an object is its mass times its distance
from the balance point.
That gives a system of two linear equations.
\begin{align*} % odd formatting to match chem problem below
40h + 15c &= 100 \\
25c &= 50+50h
\end{align*}
The second example
is from Chemistry.\index{Chemistry problem}
We can mix, under controlled conditions, toluene $\hbox{C}_7\hbox{H}_8$ and
nitric acid $\hbox{H}\hbox{N}\hbox{O}_3$ to produce
trinitrotoluene $\hbox{C}_7\hbox{H}_5\hbox{O}_6\hbox{N}_3$
along with the byproduct water
(conditions have to be very well controlled\Dash trinitrotoluene
is better known as TNT).
In what proportion should we mix them?
The number of atoms of each element present before the reaction
\begin{equation*}
x\,{\rm C}_7{\rm H}_8\ +\ y\,{\rm H}{\rm N}{\rm O}_3
\quad\longrightarrow\quad
z\,{\rm C}_7{\rm H}_5{\rm O}_6{\rm N}_3\ +\ w\,{\rm H}_2{\rm O}
\tag*{}\end{equation*}
must equal the number present afterward.
Applying that in turn to the elements C, H, N, and O gives
this system.
\begin{align*} % odd formatting to state more naturally
7x &= 7z \\
8x +1y &= 5z+2w \\
1y &= 3z \\
3y &= 6z+1w
\end{align*}
Both examples come down to solving a system of equations.
In each system, the equations involve only the first power of each variable.
This chapter shows how to solve any such system.
\subsection{Gauss's Method}
\begin{definition}\label{def:linearcombination}
%<*df:linearcombination>
A \definend{linear combination}\index{linear combination} of
\( x_1 \), \ldots, \( x_n \) has the form
\begin{equation*}
a_1x_1+a_2x_2+a_3x_3+\cdots+a_nx_n
\end{equation*}
where the numbers \( a_1, \ldots ,a_n\in\Re \) are the combination's
\definend{coefficients}\index{linear equation!coefficients}.
%</df:linearcombination>
%<*df:linearequations>
A \definend{linear equation}\index{linear equation}
in the variables $x_1$, \ldots, $x_n$
has the form
$a_1x_1+a_2x_2+a_3x_3+\cdots+a_nx_n=d$
where
\( d\in\Re \) is the \definend{constant}\index{linear equation!constant}.
An \( n \)-tuple \( (s_1,s_2,\ldots ,s_n)\in\Re^n \) is a
\definend{solution}\index{linear equation!solution of} %
of, or \definend{satisfies}, that equation if substituting the numbers
$s_1$, \ldots, $s_n$ for the variables
gives a true statement:
$a_1s_1+a_2s_2+\cdots+a_ns_n=d$.
A \definend{system of linear equations}\index{linear equation!system of}%
\index{system of linear equations}
\begin{equation*}
\begin{linsys}{4}
a_{1,1}x_1 &+ &a_{1,2}x_2 &+ &\cdots &+ &a_{1,n}x_n &= &d_1 \\
a_{2,1}x_1 &+ &a_{2,2}x_2 &+ &\cdots &+ &a_{2,n}x_n &= &d_2 \\
& & & & & & &\vdotswithin{=} \\
a_{m,1}x_1 &+ &a_{m,2}x_2 &+ &\cdots &+ &a_{m,n}x_n &= &d_m
\end{linsys}
\end{equation*}
has the solution
\( (s_1,s_2,\ldots ,s_n) \) if that $n$-tuple is a solution of all
of the equations.
%</df:linearequations>
\end{definition}
\begin{example}
The combination \( 3x_1 + 2x_2 \) of $x_1$ and $x_2$ is linear.
The combination \( 3x_1^2 + 2\sin(x_2) \) is not linear, nor is
\( 3x_1^2 + 2x_2 \).
\end{example}
\begin{example}
The ordered pair \( (-1,5) \) is a solution of this system.
\begin{equation*}
\begin{linsys}{2}
3x_1 &+ &2x_2 &= &7 \\
-x_1 &+ &x_2 &= &6
\end{linsys}
\end{equation*}
In contrast, \( (5,-1) \) is not a solution.
\end{example}
Finding the set of all solutions is
\definend{solving}\index{system of linear equations!solving}
the system.
We don't need
guesswork or good luck,
there is an algorithm that always works.
This algorithm is
\definend{Gauss's Method}\index{Gauss's Method}%
\index{system of linear equations!Gauss's Method}
(or \definend{Gaussian elimination}\index{Gaussian elimination}%
\index{system of linear equations!Gaussian elimination}
or \definend{linear elimination}\index{linear elimination}%
\index{system of linear equations!linear elimination}%
\index{system of linear equations!elimination}%
\index{elimination, Gaussian}).
% It transforms the system, step by step, into one
% with a form that we can easily solve.
% We will first illustrate how it goes and then we will see the
% formal statement.
\begin{example}
To solve this system
\begin{equation*}
\begin{linsys}{3}
& & & &3x_3 &= &9 \\
x_1 &+ &5x_2 &- &2x_3 &= &2 \\
\frac{1}{3}x_1 &+ &2x_2 & & &= &3
\end{linsys}
\end{equation*}
we transform it, step by step, until it is in a form that
we can easily solve.
The first transformation
rewrites the system by interchanging the first and third row.
\begin{align*}
\quad
&\grstep{ \text{swap row 1 with row 3} }
\begin{linsys}{3}
\frac{1}{3}x_1 &+ &2x_2 & & &= &3 \\
x_1 &+ &5x_2 &- &2x_3 &= &2 \\
& & & &3x_3 &= &9
\end{linsys}
\end{align*}
The second transformation rescales the first row by a factor of~$3$.
\begin{align*}
\quad
&\grstep{ \text{multiply row 1 by 3} }
\begin{linsys}{3}
x_1 &+ &6x_2 & & &= &9 \\
x_1 &+ &5x_2 &- &2x_3 &= &2 \\
& & & &3x_3 &= &9
\end{linsys}
\end{align*}
The third transformation is the only nontrivial one in this example.
We mentally multiply both sides of the first row by \( -1 \),
mentally add that to the second row,
and write the result in as the new second row.
\begin{align*}
&\grstep{ \text{add \(-1\) times row 1 to row 2} }
\begin{linsys}{3}
x_1 &+ &6x_2 & & &= &9 \\
& &-x_2 &- &2x_3 &= &-7 \\
& & & &3x_3 &= &9
\end{linsys}
\end{align*}
These steps have brought the system to a
form where we can easily find the value of each variable.
The bottom equation shows that \( x_3=3 \).
Substituting $3$ for \( x_3 \) in the middle equation shows that \( x_2=1 \).
Substituting those two into the top equation
gives that \( x_1=3 \).
Thus the system has a unique solution;
the solution set is \set{(3,1,3)}.
\end{example}
Most of this subsection and the next one consists of examples
of solving linear systems by Gauss's Method, which
we will use throughout the book.
It is fast and easy.
But before we do those examples we will first show that
it is also safe:
Gauss's Method never loses solutions
(any tuple that is a solution to the system before you apply the method is also
a solution after), nor does it ever
pick up extraneous solutions
(any tuple that is not a solution before is also not a solution after).
\begin{theorem}[Gauss's Method]
\index{linear equation!solution of!Gauss's Method} \label{th:GaussMethod}
%<*th:GaussMethod>
If a linear system is changed to another by one of these operations
\begin{enumerate}
\setlength{\itemsep}{0ex}
\item
an equation is swapped with another
\item
an equation has both sides multiplied by a nonzero constant
\item
an equation is replaced by the sum of itself and a multiple of another
\end{enumerate}
then the two systems have the same set of solutions.
%</th:GaussMethod>
\end{theorem}
Each of the three Gauss's Method operations has a restriction.
Multiplying a row by~\( 0 \) is not allowed because obviously that
can change the solution set.
Similarly, adding a multiple of a row to itself is not allowed because
adding~\( -1 \) times the row to itself has the effect of multiplying the row
by~\( 0 \).
We disallow swapping a row with itself
to make some results in the fourth chapter easier,
and also because it's pointless.
\begin{proof}
We will cover the equation swap operation here.
The other two
cases are \nearbyexercise{ex:ProveGaussMethod}.
%<*pf:GaussMethod0>
Consider a linear system.
\begin{equation*}
\begin{linsys}{4}
a_{1,1}x_1 &+ &a_{1,2}x_2 &+ &\cdots &+ &a_{1,n}x_n &= &d_1 \\
& & & & & & &\vdotswithin{=} \\
a_{i,1}x_1 &+ &a_{i,2}x_2 &+ &\cdots &+ &a_{i,n}x_n &= &d_i \\
& & & & & & &\vdotswithin{=} \\
a_{j,1}x_1 &+ &a_{j,2}x_2 &+ &\cdots &+ &a_{j,n}x_n &= &d_j \\
& & & & & & &\vdotswithin{=} \\
a_{m,1}x_1 &+ &a_{m,2}x_2 &+ &\cdots &+ &a_{m,n}x_n &= &d_m
\end{linsys}
\end{equation*}
The tuple \( (s_1,\ldots\,,s_n) \)
satisfies this system
if and only if substituting the values for the
variables, the $s$'s for the $x$'s, gives a conjunction of true statements:
$a_{1,1}s_1+a_{1,2}s_2+\cdots+a_{1,n}s_n=d_1$
and \ldots\
$a_{i,1}s_1+a_{i,2}s_2+\cdots+a_{i,n}s_n=d_i$
and \ldots\ $a_{j,1}s_1+a_{j,2}s_2+\cdots+a_{j,n}s_n=d_j$
and \ldots\ $a_{m,1}s_1+a_{m,2}s_2+\cdots+a_{m,n}s_n=d_m$.
%</pf:GaussMethod0>
%<*pf:GaussMethod1>
In a list of statements joined with `and' we can
rearrange the order of the statements.
Thus
this requirement is met if and only if
$a_{1,1}s_1+a_{1,2}s_2+\cdots+a_{1,n}s_n=d_1$
and \ldots\ $a_{j,1}s_1+a_{j,2}s_2+\cdots+a_{j,n}s_n=d_j$
and \ldots\ $a_{i,1}s_1+a_{i,2}s_2+\cdots+a_{i,n}s_n=d_i$
and \ldots\ $a_{m,1}s_1+a_{m,2}s_2+\cdots+a_{m,n}s_n=d_m$.
This is exactly the requirement that \( (s_1,\ldots\,,s_n) \)
solves the system after the row swap.
%</pf:GaussMethod1>
\end{proof}
\begin{definition} \label{df:GaussMethod}
%<*df:GaussMethod>
The three operations from
\nearbytheorem{th:GaussMethod}
are the
\definend{elementary reduction
operations},\index{Gauss's Method!elementary operations}%
\index{elementary reduction operations}
or \definend{row operations}\index{elementary row operations},
or \definend{Gaussian operations}.
They are
\definend{swapping}\index{elementary reduction operations! swapping}%
\index{swapping rows},
\definend{multiplying by a scalar} (or
\definend{rescaling}\index{elementary reduction operations! rescaling}%
\index{rescaling rows}), and
\definend{row combination}\index{elementary reduction operations! row combination}%
\index{combining rows}\index{adding rows}.
%</df:GaussMethod>
\end{definition}
When writing out the calculations, we will
abbreviate `row \(i\)' by `\( \rho_i \)'.
For instance, we will denote a row combination operation by
\( k\rho_i+\rho_j \),
with the row that changes written second.
To save writing we will
often combine addition steps when they use the same $\rho_i$ as in the
next example.
\begin{example}
Gauss's Method systematically applies the row operations to solve a system.
Here is a typical case.
\begin{equation*}
\begin{linsys}{3}
x &+ &y & & &= &0 \\
2x &- &y &+ &3z &= &3 \\
x &- &2y &- &z &= &3
\end{linsys}
\end{equation*}
We begin by using the first row to
eliminate the $2x$ in the second row and the $x$ in the third.
To get rid of the $2x$ we mentally multiply the entire first row by $-2$,
add that to the
second row, and write the result in as the new second row.
To eliminate the~$x$ in the third row we multiply the first row by
$-1$, add that to the third row, and write the result in as the
new third row.
\begin{align*}
&\grstep[-\rho_1 +\rho_3]{-2\rho_1 +\rho_2}
\begin{linsys}{3}
x &+ &y & & &= &0 \\
& &-3y&+ &3z &= &3 \\
& &-3y&- &z &= &3
\end{linsys}
\end{align*}
% In this version of the system, the last two equations involve only two unknowns.
We finish by transforming the second system into a third, where the
bottom equation involves only one unknown.
We do that by using
the second row to eliminate the $y$~term from the third row.
\begin{equation*}
\grstep{-\rho_2 +\rho_3}
\begin{linsys}{3}
x &+ &y & & &= &0 \\
& &-3y&+ &3z &= &3 \\
& & & &-4z&= &0
\end{linsys}
\end{equation*}
Now finding the system's solution is easy.
The third row gives \( z=0 \).
Substitute that back\index{Gauss's Method!back-substitution}%
\index{back-substitution}
into the second row to get \( y=-1 \).
Then substitute back into the first row to get \( x=1 \).
\end{example}
\begin{example}
For the Physics problem\index{Statics problem} from the start of this
chapter, Gauss's Method gives this.
\begin{equation*}
\begin{linsys}{2}
40h &+ &15c &= &100 \\
-50h &+ &25c &= &50
\end{linsys}
\grstep{5/4\rho_1 +\rho_2}
\begin{linsys}{2}
40h &+ &15c &= &100 \\
& &(175/4)c &= &175
\end{linsys}
\end{equation*}
So \( c=4 \), and back-substitution gives that \( h=1 \).
(We will solve the Chemistry problem later.)
\end{example}
\begin{example}
The reduction
\begin{align*}
\begin{linsys}{3}
x &+ &y &+ &z &= &9 \\
2x &+ &4y &- &3z &= &1 \\
3x &+ &6y &- &5z &= &0
\end{linsys}
&\grstep[-3\rho_1 +\rho_3]{-2\rho_1 +\rho_2}
\begin{linsys}{3}
x &+ &y &+ &z &= &9 \\
& &2y &- &5z &= &-17\\
& &3y &- &8z&= &-27
\end{linsys} \\
&\grstep{-(3/2)\rho_2+\rho_3}
\begin{linsys}{3}
x &+ &y &+ &z &= &9 \\
& &2y &- &5z &= &-17\\
& & & &-(1/2)z &= &-(3/2)
\end{linsys}
\end{align*}
shows that \( z=3 \), \( y=-1 \), and \( x=7 \).
\end{example}
As illustrated above, the point of Gauss's Method
is to use the elementary reduction
operations to set up back-substitution.
\begin{definition} \label{df:EchelonForm}
%<*df:EchelonForm>
In each row of a system,
the first variable with a nonzero coefficient is the row's
\definend{leading variable}\index{echelon form!leading variable}%
\index{leading!variable}. %
A system is in \definend{echelon form}\index{echelon form}
if each leading variable
is to the right of the leading variable in the row above it,
except for the leading variable in the first row,
and any all-zero rows are at the bottom.
%</df:EchelonForm>
\end{definition}
\begin{example}
The prior three examples only used the operation of row combination.
This linear system requires the swap operation
to get it into echelon form because
after the first combination
\begin{align*}
\begin{linsys}{4}
x &- &y & & & & &= &0 \\
2x &- &2y &+ &z &+ &2w &= &4 \\
& &y & & &+ &w &= &0 \\
& & & &2z &+ &w &= &5
\end{linsys}
&\grstep{-2\rho_1 +\rho_2}
\begin{linsys}{4}
x &- &y &\spaceforemptycolumn & & & &= &0 \\
& & & &z &+ &2w &= &4 \\
& &y & & &+ &w &= &0 \\
& & & &2z &+ &w &= &5
\end{linsys}
\end{align*}
the second equation has no leading $y$.
We exchange it for a lower-down row that has a leading $y$.
\begin{align*}
&\grstep{\rho_2 \leftrightarrow\rho_3}
\begin{linsys}{4}
x &- &y &\spaceforemptycolumn & & & &= &0 \\
& &y & & &+ &w &= &0 \\
& & & &z &+ &2w &= &4 \\
& & & &2z &+ &w &= &5
\end{linsys}
\end{align*}
(Had there been more than one suitable row below the second
then we could have used any one.)
With that, Gauss's Method proceeds as before.
\begin{align*}
&\grstep{-2\rho_3 +\rho_4}
\begin{linsys}{4}
x &- &y &\spaceforemptycolumn & & & &= &0 \\
& &y & & &+ &w &= &0 \\
& & & &z &+ &2w &= &4 \\
& & & & & &-3w&= &-3
\end{linsys}
\end{align*}
Back-substitution gives \( w=1 \), \( z=2 \) , \( y=-1 \), and \( x=-1 \).
\end{example}
Strictly speaking, to solve linear systems we don't need
the row rescaling operation.
We have introduced it here because it is convenient and because we will use it
later in this chapter as part of a variation of Gauss's Method,
the Gauss-Jordan Method.
All of the systems so far have the same number of equations as unknowns.
All of them have a solution and for all of them there is only one solution.
We finish this subsection by seeing
other things that can happen.
\begin{example} \label{ex:MoreEqsThanUnks}
This system
has more equations than variables.
\begin{equation*}
\begin{linsys}{2}
x &+ &3y &= &1 \\
2x &+ &y &= &-3 \\
2x &+ &2y &= &-2
\end{linsys}
\end{equation*}
Gauss's Method helps us understand this system also, since this
\begin{align*}
&\grstep[-2\rho_1 +\rho_3]{-2\rho_1 +\rho_2}
\begin{linsys}{2}
x &+ &3y &= &1 \\
& &-5y &= &-5 \\
& &-4y &= &-4
\end{linsys}
\end{align*}
shows that one of the equations is redundant.
Echelon form
\begin{equation*}
\grstep{-(4/5)\rho_2 +\rho_3}
\begin{linsys}{2}
x &+ &3y &= &1 \\
& &-5y &= &-5 \\
& &0 &= &0
\end{linsys}
\end{equation*}
gives that \( y=1 \) and \( x=-2 \).
The `\( 0=0 \)' reflects the redundancy.
\end{example}
Gauss's Method is also useful on systems with more variables than equations.
The next subsection has many examples.
Another way that linear systems can differ from the examples shown above
is that some linear systems do not have a unique solution.
This can happen in two ways.
The first is that a system can fail to have any solution at all.
\begin{example} \label{ex:MoreEqsThanUnksInconsis}
Contrast the system in the last example with this one.
\begin{equation*}
\begin{linsys}{2}
x &+ &3y &= &1 \\
2x &+ &y &= &-3 \\
2x &+ &2y &= &0
\end{linsys}
\grstep[-2\rho_1 +\rho_3]{-2\rho_1 +\rho_2}
\begin{linsys}{2}
x &+ &3y &= &1 \\
& &-5y &= &-5 \\
& &-4y &= &-2
\end{linsys}
\end{equation*}
Here the system is inconsistent:~no pair of numbers $(s_1,s_2)$ satisfies
all three equations simultaneously.
Echelon form makes the inconsistency obvious.
\begin{equation*}
\grstep{-(4/5)\rho_2 +\rho_3}
\begin{linsys}{2}
x &+ &3y &= &1 \\
& &-5y &= &-5 \\
& &0 &= &2
\end{linsys}
\end{equation*}
The solution set is empty.
\end{example}
\begin{example}
The prior system has more equations than unknowns but
that is not what causes the inconsistency\Dash
\nearbyexample{ex:MoreEqsThanUnks}
has more equations than unknowns and yet is consistent.
Nor is having more equations than unknowns necessary for
inconsistency, as we see with this inconsistent system that has the
same number of equations as unknowns.
\begin{equation*}
\begin{linsys}{2}
x &+ &2y &= &8 \\
2x &+ &4y &= &8
\end{linsys}
\grstep{-2\rho_1 + \rho_2}
\begin{linsys}{2}
x &+ &2y &= &8 \\
& &0 &= &-8
\end{linsys}
\end{equation*}
Instead,
inconsistency has to do with the interaction of the left and right sides;
in the first system above the left side's second equation is twice the
first but the right side's second constant is not twice the first.
Later we will have more to say about dependencies between a system's
parts.
\end{example}
The other way that
a linear system can fail to have a unique solution, besides having no solutions,
is to have many solutions.
\begin{example}
In this system
\begin{equation*}
\begin{linsys}{2}
x &+ &y &= &4 \\
2x &+ &2y &= &8
\end{linsys}
\end{equation*}
any pair of numbers satisfying the first equation also
satisfies the second.
The solution set
% \( \{ (x,y)\suchthat x+y=4 \} \)
\( \set{ (x,y)\suchthat x+y=4} \)
is infinite; some example
member pairs are~$(0,4)$, $(-1,5)$, and $(2.5,1.5)$.
The result of applying Gauss's Method here contrasts with the prior example
because we do not get a contradictory equation.
\begin{equation*}
\grstep{-2\rho_1 + \rho_2}
\begin{linsys}{2}
x &+ &y &= &4 \\
& &0 &= &0
\end{linsys}
\end{equation*}
\end{example}
Don't be fooled by that example:~a $0=0$ equation
is not the signal that a system has many solutions.
\begin{example} \label{ex:NoZerosInfManySols}
The absence of a \( 0=0 \) equation does not keep a system from having
many different solutions.
This system is in echelon form,
has no $0=0$, but has infinitely many solutions,
including $(0,1,-1)$,
$(0,1/2,-1/2)$, $(0,0,0)$, and $(0,-\pi,\pi)$
(any triple whose first component is $0$ and whose second component is the
negative of the third is a solution).
\begin{equation*}
\begin{linsys}{3}
x &+ &y &+ &z &= &0 \\
& &y &+ &z &= &0
\end{linsys}
\end{equation*}
Nor does the presence of \( 0=0 \) mean that the system must have
many solutions.
\nearbyexample{ex:MoreEqsThanUnks} shows that.
So does this system, which does not have
any solutions at all despite that
in echelon form it has a $0=0$ row.
\begin{align*}
\begin{linsys}{3}
2x & & &- &2z &= &6 \\
& &y &+ &z &= &1 \\
2x &+ &y &- &z &= &7 \\
& &3y &+ &3z &= &0
\end{linsys}
&\grstep{-\rho_1 +\rho_3}
\begin{linsys}{3}
2x &\spaceforemptycolumn & &- &2z &= &6 \\
& &y &+ &z &= &1 \\
& &y &+ &z &= &1 \\
& &3y &+ &3z &= &0
\end{linsys} \\
&\grstep[-3\rho_2 +\rho_4]{-\rho_2 +\rho_3}
\begin{linsys}{3}
2x &\spaceforemptycolumn & &- &2z &= &6 \\
& &y &+ &z &= &1 \\
& & & &0 &= &0 \\
& & & &0 &= &-3
\end{linsys}
\end{align*}
\end{example}
In summary,
Gauss's Method uses the row operations to
set a system up for back substitution.
If any step shows a contradictory equation then we can stop with the
conclusion that the system has no solutions.
If we reach echelon form without a contradictory equation,
and each variable is a leading variable in its
row, then the system has a unique solution and we find it by
back substitution.
Finally, if we reach echelon form without a contradictory equation,
and there is not a unique solution\Dash
that is, at least one variable is not a leading variable\Dash
then the system has many solutions.
The next subsection explores the third case.
We will see that such a system must have infinitely many solutions
and we will describe the
solution set.
\medskip
\noindent\textbf{Note.}\hspace*{.2em}
\textit{Here, and in the rest of the book,
you must justify all of your exercise answers.
For instance, if a question asks whether a system has a solution then you
must justify a yes response by producing the solution and must justify
a no response by showing that no solution exists.}
\begin{exercises}
\recommended \item
Use Gauss's Method to find the unique solution for each system.
\begin{exparts*}
\partsitem
$\begin{linsys}{2}
2x &+ &3y &= &13 \\
x &- &y &= &-1
\end{linsys}$
\partsitem
$\begin{linsys}{3}
x & & &- &z &= &0 \\
3x &+ &y & & &= &1 \\
-x &+ &y &+ &z &= &4
\end{linsys}$
\end{exparts*}
\begin{answer}
\begin{exparts}
\partsitem Gauss's Method
\begin{equation*}
\grstep{-(1/2)\rho_1+\rho_2}
\begin{linsys}{2}
2x &+ &3y &= &13 \\
&- &(5/2)y &= &-15/2
\end{linsys}
\end{equation*}
gives that the solution is $y=3$ and $x=2$.
\partsitem Gauss's Method here
\begin{equation*}
\grstep[\rho_1+\rho_3]{-3\rho_1+\rho_2}
\begin{linsys}{3}
x & & &- &z &= &0 \\
& &y &+ &3z &= &1 \\
& &y & & &= &4
\end{linsys}
\grstep{-\rho_2+\rho_3}
\begin{linsys}{3}
x & & &- &z &= &0 \\
& &y &+ &3z &= &1 \\
& & & &-3z &= &3
\end{linsys}
\end{equation*}
gives $x=-1$, $y=4$, and $z=-1$.
\end{exparts}
\end{answer}
\recommended \item
Use Gauss's Method to solve each system
or conclude `many solutions' or `no solutions'.
\begin{exparts*}
\partsitem \(
\begin{linsys}[t]{2}
2x &+ &2y &= &5 \\
x &- &4y &= &0
\end{linsys}
\)
\partsitem \(
\begin{linsys}[t]{2}
-x &+ &y &= &1 \\
x &+ &y &= &2
\end{linsys}
\)
\partsitem \(
\begin{linsys}[t]{3}
x &- &3y &+ &z &= &1 \\
x &+ &y &+ &2z &= &14
\end{linsys}
\)
\partsitem \(
\begin{linsys}[t]{2}
-x &- &y &= &1 \\
-3x &- &3y &= &2
\end{linsys}
\)
\partsitem \(
\begin{linsys}[t]{3}
& &4y &+ &z &= &20 \\
2x &- &2y &+ &z &= &0 \\
x & & &+ &z &= &5 \\
x &+ &y &- &z &= &10
\end{linsys}
\)
\partsitem \( \begin{linsys}[t]{4}
2x & & &+ &z &+ &w &= &5 \\
& &y & & &- &w &= &-1 \\
3x & & &- &z &- &w &= &0 \\
4x &+ &y &+ &2z &+ &w &= &9
\end{linsys}
\)
\end{exparts*}
\begin{answer}
\begin{exparts}
\partsitem Gaussian reduction
\begin{equation*}
\grstep{-(1/2)\rho_1+\rho_2}
\begin{linsys}{2}
2x &+ &2y &= &5 \\
& &-5y &= &-5/2
\end{linsys}
\end{equation*}
shows that \( y=1/2 \) and \( x=2 \) is the unique solution.
\partsitem Gauss's Method
\begin{equation*}
\grstep{\rho_1+\rho_2}
\begin{linsys}{2}
-x &+ &y &= &1 \\
& &2y &= &3
\end{linsys}
\end{equation*}
gives \( y=3/2 \) and \( x=1/2 \) as the only solution.
\partsitem Row reduction
\begin{equation*}
\grstep{-\rho_1+\rho_2}
\begin{linsys}{3}
x &- &3y &+ &z &= &1 \\
& &4y &+ &z &= &13
\end{linsys}
\end{equation*}
shows, because the variable $z$ is not a leading variable in any
row, that there are many solutions.
\partsitem Row reduction
\begin{equation*}
\grstep{-3\rho_1+\rho_2}
\begin{linsys}{2}
-x &- &y &= &1 \\
& &0 &= &-1
\end{linsys}
\end{equation*}
shows that there is no solution.
\partsitem Gauss's Method
\begin{align*}
\grstep{\rho_1\leftrightarrow\rho_4}
\begin{linsys}{3}
x &+ &y &- &z &= &10 \\
2x &- &2y &+ &z &= &0 \\
x & & &+ &z &= &5 \\
& &4y &+ &z &= &20
\end{linsys}
&\grstep[-\rho_1+\rho_3]{-2\rho_1+\rho_2}
\begin{linsys}{3}
x &+ &y &- &z &= &10 \\
& &-4y &+ &3z &= &-20\\
& &-y &+ &2z &= &-5 \\
& &4y &+ &z &= &20
\end{linsys} \\
&\grstep[\rho_2+\rho_4]{-(1/4)\rho_2+\rho_3}
\begin{linsys}{3}
x &+ &y &- &z &= &10 \\
& &-4y &+ &3z &= &-20\\
& & & &(5/4)z &= &0 \\
& & & &4z &= &0
\end{linsys}
\end{align*}
gives the unique solution \( (x,y,z)=(5,5,0) \).
\partsitem Here Gauss's Method gives
\begin{align*}
&\grstep[-2\rho_1+\rho_4]{-(3/2)\rho_1+\rho_3}
\begin{linsys}{4}
2x &\spaceforemptycolumn & &+ &z &+ &w &= &5 \\
& &y & & &- &w &= &-1 \\
& & &- &(5/2)z &- &(5/2)w &= &-15/2 \\
& &y & & &- &w &= &-1
\end{linsys} \\
&\grstep{-\rho_2+\rho_4}
\begin{linsys}{4}
2x &\spaceforemptycolumn & &+ &z &+ &w &= &5 \\
& &y & & &- &w &= &-1 \\
& & &- &(5/2)z &- &(5/2)w &= &-15/2 \\
& & & & & &0 &= &0
\end{linsys}
\end{align*}
which shows that there are many solutions.
\end{exparts}
\end{answer}
\recommended \item
We can solve linear systems by methods other
than Gauss's.
One often taught in high school is to solve one of the
equations for a variable, then substitute the resulting expression into
other equations.
Then we repeat that step until there is an equation with only one
variable.
From that we get the first number in the solution and then we get the
rest with
back-substitution.
This method takes longer than Gauss's Method, since it involves
more arithmetic operations, and is also more
likely to lead to errors.
To illustrate how it can lead to wrong conclusions, we will use the system
\begin{equation*}
\begin{linsys}{2}
x &+ &3y &= &1 \\
2x &+ &y &= &-3 \\
2x &+ &2y &= &0
\end{linsys}
\end{equation*}
from \nearbyexample{ex:MoreEqsThanUnksInconsis}.
\begin{exparts}
\partsitem Solve the first equation for $x$ and
substitute that expression into the second equation.
Find the resulting $y$.
\partsitem Again solve the first equation for $x$,
but this time substitute that expression into the third equation.
Find this $y$.
\end{exparts}
What extra step must a user of this method take to avoid
erroneously concluding a system has a solution?
\begin{answer}
\begin{exparts}
\partsitem From $x=1-3y$ we get that $2(1-3y)+y=-3$, giving $y=1$.
\partsitem From $x=1-3y$ we get that $2(1-3y)+2y=0$, leading to
the conclusion that $y=1/2$.
\end{exparts}
Users of this method must check any potential solutions by
substituting back into all the equations.
\end{answer}
\recommended \item
For which values of \( k \) are
there no solutions, many solutions, or a unique solution
to this system?
\begin{equation*}
\begin{linsys}{2}
x &- &y &= &1 \\
3x &- &3y &= &k
\end{linsys}
\end{equation*}
\begin{answer}
Do the reduction
\begin{equation*}
\grstep{-3\rho_1+\rho_2}
\begin{linsys}{2}
x &- &y &= &1\hfill \\
& &0 &= &-3+k\hfill
\end{linsys}
\end{equation*}
to conclude this system has no solutions if \( k\neq 3 \) and if
\( k=3 \) then it has infinitely many solutions.
It never has a unique solution.
\end{answer}
\recommended \item
This system is not linear in that it says $\sin\alpha$ instead of $\alpha$
\begin{equation*}
\begin{linsys}{3}
2\sin\alpha &- &\cos\beta &+ &3\tan\gamma &= &3 \\
4\sin\alpha &+ &2\cos\beta &- &2\tan\gamma &= &10 \\
6\sin\alpha &- &3\cos\beta &+ &\tan\gamma &= &9
\end{linsys}
\end{equation*}
and yet we can apply Gauss's Method.
Do so.
Does the system have a solution?
\begin{answer}
Let \( x=\sin\alpha \), \( y=\cos\beta \), and \( z=\tan\gamma \):
\begin{equation*}
\begin{linsys}{3}
2x &- &y &+ &3z &= &3 \\
4x &+ &2y &- &2z &= &10 \\
6x &- &3y &+ &z &= &9
\end{linsys}
\grstep[-3\rho_1+\rho_3]{-2\rho_1+\rho_2}
\begin{linsys}{3}
2x &- &y &+ &3z &= &3 \\
& &4y &- &8z &= &4 \\
& & & &-8z &= &0
\end{linsys}
\end{equation*}
gives \( z=0 \), \( y=1 \), and \( x=2 \).
Note that no \( \alpha \) satisfies that requirement.
\end{answer}
\recommended \item
% \cite{Anton}
What conditions must the constants, the $b$'s,
satisfy so that each of these systems has a solution?
\textit{Hint.}
Apply Gauss's Method and see what happens to the right side.
\begin{exparts*}
\partsitem \(
\begin{linsys}[t]{2}
x &- &3y &= &b_1 \\
3x &+ &y &= &b_2 \\
x &+ &7y &= &b_3 \\
2x &+ &4y &= &b_4
\end{linsys} \)
\partsitem \(
\begin{linsys}[t]{3}
x_1 &+ &2x_2 &+ &3x_3 &= &b_1 \\
2x_1 &+ &5x_2 &+ &3x_3 &= &b_2 \\
x_1 & & &+ &8x_3 &= &b_3
\end{linsys} \)
\end{exparts*}
\begin{answer}
\begin{exparts}
\partsitem Gauss's Method
\begin{equation*}
\grstep[-\rho_1+\rho_3 \\ -2\rho_1+\rho_4]{-3\rho_1+\rho_2}
\begin{linsys}{2}
x &- &3y &= &b_1\hfill \\
& &10y &= &-3b_1+b_2\hfill \\
& &10y &= &-b_1+b_3\hfill \\
& &10y &= &-2b_1+b_4\hfill
\end{linsys}
\grstep[-\rho_2+\rho_4]{-\rho_2+\rho_3}
\begin{linsys}{2}
x &- &3y &= &b_1\hfill \\
& &10y &= &-3b_1+b_2\hfill \\
& &0 &= &2b_1-b_2+b_3\hfill \\
& &0 &= &b_1-b_2+b_4\hfill
\end{linsys}
\end{equation*}
shows that this system is consistent if and only if both
\( b_3=-2b_1+b_2 \) and \( b_4=-b_1+b_2 \).
\partsitem Reduction
\begin{align*}