-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathg729FixedPointMath.h
316 lines (284 loc) · 13.9 KB
/
g729FixedPointMath.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*
g729FixedPointMath.h
Copyright (C) 2011 Belledonne Communications, Grenoble, France
Author : Johan Pascal
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef G729FIXEDPOINTMATH_H
#define G729FIXEDPOINTMATH_H
/*****************************************************************************/
/* */
/* This library provides the following functions */
/* */
/* g729Log2_Q0Q16 : Logarithm base 2 */
/* g729Exp2_Q11Q16 : Exponentiel base 2 */
/* g729Sqrt_Q0Q7 : Square Root */
/* g729Cos_Q13Q15 : Cosine */
/* g729Atan_Q15Q13 : Arc Tangent */
/* g729Asin_Q15Q13 : Arc Sine */
/* g729Acos_Q15Q13 : Arc Cosine */
/* */
/* Extention QxxQyy stands for input in Qxx output in Qyy */
/* */
/*****************************************************************************/
#include "typedef.h"
#include "basicOperationsMacros.h"
#include "utils.h"
/* constants defined in Q16: actual values:
KL0 = -2.059978
KL1 = 5.770780
KL2 = -3.847187
KL3 = 1.139907
*/
#define KL0 -135003
#define KL1 378194
#define KL2 -252129
#define KL3 74705
/*****************************************************************************/
/* g729Log2_Q0Q16 : logarithm base 2, frac part computed from Taylor serie */
/* paremeters: */
/* -(i) x : 32 bits integer in Q0, expected to be>0(not checked here) */
/* return value: */
/* - the log2(x) in Q16 on 32 bits */
/* */
/*****************************************************************************/
static inline word32_t g729Log2_Q0Q16(word32_t x)
{
/* first get the integer part and put it in the 16 MSB of return value (in Q16) */
uint16_t leadingZeros = countLeadingZeros(x); /* note: MSB is excluded as considered as sign bit */
word32_t retValue = SHL32(SUB16(30,leadingZeros), 16);
/* now shift the number to have it on this form 01XX XXXX XXXX XXXX, and keep only 16 bits -> consider it as a number in range [0.5, 1[ in Q0.15 */
word16_t acc = (word16_t)VSHR32(x, 16-leadingZeros);
/* So calling int the integer part of the log2, we have: */
/* int = 30 - leadingZeros */
/* acc = x*2^(leadingZeros - 16) */
/* acc = x*2^(14 - int) */
/* considering the content of acc as a Q15 number eq *2^-15*/
/* acc = x*2^(14 -int)*2^-15 */
/* acc = x*2^(-1 -int) */
/* log2(acc) = log2(x) -1 - int */
/* log2(x) ~= -3.059978 + 5.770780*x - 3.847187*x^2 + 1.139907*x^3 (for .5 < x < 1) Taylor Serie log2(x) at x near 0.75 */
/* log2(x) + 1 = -2.059978 + x*(5.770780 +x(-3.847187 + 1.139907*x)) */
/* with coeff in Q16 : */
/* log2(acc) +1 = log2(x) - int = */
/* log2(acc) +1 = -135003 +acc*(378194 +acc*(-252129 + acc*74705)) acc in Q15 and constants in Q16 -> final result will be log2(x) -int in Q16(on 32 bits) */
word32_t acc32 = ADD32(KL0, MULT16_32_Q15(acc, ADD32(KL1, MULT16_32_Q15(acc, ADD32(KL2, MULT16_32_Q15(acc, KL3))))));
return ADD32(retValue,acc32);
}
/* constants defined in Q15: actual values:
E0 = 1
E1 = log(2)
E2 = 3-4*log(2)
E3 = 3*log(2) - 2
*/
#define E0 16384
#define E1 11356
#define E2 3726
#define E3 1301
/*****************************************************************************/
/* g729Exp2_Q11Q16 : Exponentielle base 2 */
/* paremeters: */
/* -(i) x : 16 bits integer in Q11 */
/* return value: */
/* - exp2(x) in Q16 on 32 bits */
/* */
/*****************************************************************************/
static inline word32_t g729Exp2_Q11Q16(word16_t x)
{
int integer;
word16_t frac;
integer = SHR16(x,11);
if (integer>14) {
return 0x7fffffff;
} else {
if (integer < -15) {
return 0;
}
}
frac = SHL16(x-SHL16(integer,11),3);
frac = ADD16(E0, MULT16_16_Q14(frac, ADD16(E1, MULT16_16_Q14(frac, ADD16(E2 , MULT16_16_Q14(E3,frac))))));
return VSHR32(EXTEND32(frac), -integer-2);
}
/* constants in Q14 */
#define C0 3634
#define C1 21173
#define C2 -12627
#define C3 4204
/*****************************************************************************/
/* g729Sqrt_Q0Q7 : Square root */
/* x is not tested to be >=0, shall be done by caller function */
/* paremeters: */
/* -(i) x : 32 bits integer in Q0 */
/* return value: */
/* - sqrt(x) in Q7 on 32 bits */
/* */
/*****************************************************************************/
static inline word32_t g729Sqrt_Q0Q7(word32_t x)
{
if (x==0) return 0;
int k;
word32_t rt;
/* set x in Q14 in range [0.25,1[ */
k = (18-countLeadingZeros(x))>>1;
x = VSHR32(x, (k<<1)); /* x = x.2^-2k */
/* sqrt(x) ~= 0.22178 + 1.29227*x - 0.77070*x^2 + 0.25659*x^3 (for .25 < x < 1) */
/* consider x as in Q14: y = x.2^(-2k-14) -> and give sqrt(y).2^14 = sqrt(x).2^(-k-7).2^14 */
rt = ADD16(C0, MULT16_16_Q14(x, ADD16(C1, MULT16_16_Q14(x, ADD16(C2, MULT16_16_Q14(x, (C3))))))); /* rt = sqrt(x).2^(7-k)*/
rt = VSHR32(rt,-k); /* rt = sqrt(x).2^7 */
return rt;
}
/*****************************************************************************/
/* g729InvSqrt_Q0Q31 : Inverse Square root(1/Sqrt(x) */
/* x is not tested to be >=1, shall be done by caller function */
/* paremeters: */
/* -(i) x : 32 bits integer in Q0 in range [1, MAXINT32] */
/* return value: */
/* - 1/sqrt(x) in Q31 on 32 bits in range [43341/2^31, MAXINT32] */
/* */
/*****************************************************************************/
static inline word32_t g729InvSqrt_Q0Q31(word32_t x)
{
if (x==1) return MAXINT32;
return (word32_t)(DIV32_32_Q24(g729Sqrt_Q0Q7(x),x)); /* sqrt(x) in Q7 + Q24 -> Q31 */
}
/* constants Q0.15 */
#define Kcos1 32768
#define Kcos2 -16384
#define Kcos3 1365
#define Kcos4 -46
#define Ksin1 32768
#define Ksin2 -5461
#define Ksin3 273
#define Ksin4 -7
/*****************************************************************************/
/* g729Cos_Q13Q15 : Cosine fonction in [0, Pi] */
/* x is not tested to be in correct range */
/* paremeters: */
/* -(i) x : 16 bits integer in Q13 in range [0, Pi(25736)] */
/* return value: */
/* - cos(x) in Q0.15 on 16 bits in range [-1, 1[ */
/* */
/*****************************************************************************/
static inline word16_t g729Cos_Q13Q15(word16_t x)
{
/* input var x in Q2.13 and in ]0, Pi[ */
word16_t x2,xScaled;
if (x<12868) {
if (x<6434) { /* x in ]0, Pi/4[ */
x2 = MULT16_16_P11(x,x); /* in Q0.15 */
return SATURATE(ADD32(Kcos1, MULT16_16_P15(x2, ADD32(Kcos2, MULT16_16_P15(x2, ADD32(Kcos3, MULT16_16_P15(Kcos4, x2)))))), MAXINT16); /* return cos x, must saturate if return value is +1 */
} else {/* x in [Pi/4, Pi/2[ */
x = SUB16(12868,x); /* x = pi/2 -x, x in [0, Pi/4] in Q0.13 */
x2 = MULT16_16_P11(x,x); /* in Q0.15 */
return (MULT16_16_P13(x,ADD32(Ksin1, MULT16_16_P15(x2, ADD32(Ksin2, MULT16_16_P15(x2, ADD32(Ksin3, MULT16_16_P15(Ksin4, x2)))))))); /* return cos x as sin(pi/2 -x) */
}
} else { /* x in [Pi/2, Pi[ */
xScaled = SUB16(25736,x); /* xScaled = Pi - x -> in [0,Pi/2] with cos(Pi-x) = -cos(x) and sin(Pi-x) = */
if (x<19302) { /* x in [Pi/2, 3Pi/4], xScaled in [Pi/4, Pi/2] */
xScaled = SUB16(12868,xScaled); /* xScaled = pi/2 - xScaled = x - Pi/2, xScaled in [0, Pi/4] in Q0.13 */
x2 = MULT16_16_P11(xScaled,xScaled); /* in Q0.15 */
return (MULT16_16_P13(-xScaled,ADD32(Ksin1, MULT16_16_P15(x2, ADD32(Ksin2, MULT16_16_P15(x2, ADD32(Ksin3, MULT16_16_P15(Ksin4, x2)))))))); /* return cos x as -sin(x - Pi/2) */
} else { /* x in [3Pi/4, Pi[ -> xScaled in [0, Pi/4], cos(xScaled) = -cos(x) */
x2 = MULT16_16_P11(xScaled,xScaled); /* in Q0.15 */
return (SUB32(-Kcos1, MULT16_16_P15(x2, ADD32(Kcos2, MULT16_16_P15(x2, ADD32(Kcos3, MULT16_16_P15(Kcos4, x2))))))); /* return cos x as -cos(Pi -x) */
}
}
}
/* KPI6 = pi/6 in Q15 */
#define KPI6 17157
/* KtanPI6 = tan(pi/6) in Q15 */
#define KtanPI6 18919
/* KtanPI12 = tan(pi/12) in Q15 */
#define KtanPI12 8780
/* B = 0.257977658811405 in Q15 */
#define atanB 8453
/* C = 0.59120450521312 in Q15 */
#define atanC 19373
/*****************************************************************************/
/* g729Atan_Q15Q13: ArcTangent fonction in [-2^16, 2^16[ */
/* paremeters: */
/* -(i) x : 32 bits integer in Q15 in range [-2^16, 2^16[ */
/* return value: */
/* - atan(x) in Q2.13 on 16 bits in range ]-Pi/2(12868), Pi/2(12868)[ */
/* */
/*****************************************************************************/
static inline word16_t g729Atan_Q15Q13(word32_t x)
{
/* constants for rational polynomial */
word32_t angle;
word16_t x2;
int highSegment = 0;
/* make argument positive */
int sign = 0;
if (x < 0) {
x = NEG16(x);
sign = 1;
}
/* limit argument to 0..1 */
int complement = 0;
if(x > ONE_IN_Q15){
complement = 1;
x = DIV32(ONE_IN_Q30, x); /* 1/x in Q15 */
}
/* determine segmentation */
if(x > KtanPI12){
highSegment = 1;
/* x = (x - k)/(1 + k*x); */
x = DIV32(SHL(SUB32(x, KtanPI6), 15), ADD32(MULT16_16_Q15(KtanPI6, x), ONE_IN_Q15));
}
/* argument is now < tan(15 degrees) */
/* approximate the function */
x2 = MULT16_16_Q15(x,x);
angle = DIV32(MULT16_16(x, ADD32(ONE_IN_Q15, MULT16_16_Q15(atanB, x2))), ADD32(ONE_IN_Q15, MULT16_16_Q15(atanC, x2))); /* ang = x*(1 + B*x2)/(1 + C*x2) */
/* now restore offset if needed */
if(highSegment) {
angle += KPI6;
}
/* restore complement if needed */
if(complement) {
angle = SUB32(HALF_PI_Q15, angle);
}
/* set result in Q13 */
angle = PSHR(angle, 2);
/* restore sign if needed */
if(sign) {
return NEG16(angle);
} else {
return angle;
}
}
/*****************************************************************************/
/* g729Asin_Q15Q13: ArcSine fonction */
/* paremeters: */
/* -(i) x : 16 bits integer in Q15 in range ]-1, 1[ */
/* return value: */
/* - asin(x) in Q2.13 on 16 bits in range ]-Pi/2(12868), Pi/2(12868)[ */
/* */
/*****************************************************************************/
static inline word16_t g729Asin_Q15Q13(word16_t x)
{
return g729Atan_Q15Q13(DIV32(SHL(x,15), PSHR(g729Sqrt_Q0Q7(SUB32(ONE_IN_Q30, MULT16_16(x,x))),7))); /* atan(x/sqrt(1.0 - x*x)) */
}
/*****************************************************************************/
/* g729Acos_Q15Q13: ArcCosine fonction */
/* paremeters: */
/* -(i) x : 16 bits integer in Q15 in range ]-1, 1[ */
/* return value: */
/* - acos(x) in Q2.13 on 16 bits in range ]0, Pi(25736)[ */
/* */
/*****************************************************************************/
static inline word16_t g729Acos_Q15Q13(word16_t x)
{
return(HALF_PI_Q13 - g729Asin_Q15Q13(x));
}
#endif /* ifndef G729FIXEDPOINTMATH_H */