-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain.py
executable file
·177 lines (140 loc) · 5.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
"""
train.py
"""
from __future__ import division
from __future__ import print_function
import sys
import argparse
import ujson as json
import numpy as np
from time import time
import torch
from torch.autograd import Variable
from torch.nn import functional as F
from models import GSSupervised
from problem import NodeProblem
from helpers import set_seeds, to_numpy
from nn_modules import aggregator_lookup, prep_lookup, sampler_lookup
from lr import LRSchedule
# --
# Helpers
def evaluate(model, problem, mode='val'):
assert mode in ['test', 'val']
preds, acts = [], []
for (ids, targets, _) in problem.iterate(mode=mode, shuffle=False):
preds.append(to_numpy(model(ids, problem.feats, train=False)))
acts.append(to_numpy(targets))
return problem.metric_fn(np.vstack(acts), np.vstack(preds))
# --
# Args
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--problem-path', type=str, required=True)
parser.add_argument('--no-cuda', action="store_true")
# Optimization params
parser.add_argument('--batch-size', type=int, default=512)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--lr-init', type=float, default=0.01)
parser.add_argument('--lr-schedule', type=str, default='constant')
parser.add_argument('--weight-decay', type=float, default=0.0)
# Architecture params
parser.add_argument('--sampler-class', type=str, default='uniform_neighbor_sampler')
parser.add_argument('--aggregator-class', type=str, default='mean')
parser.add_argument('--prep-class', type=str, default='identity')
parser.add_argument('--n-train-samples', type=str, default='25,10')
parser.add_argument('--n-val-samples', type=str, default='25,10')
parser.add_argument('--output-dims', type=str, default='128,128')
# Logging
parser.add_argument('--log-interval', default=10, type=int)
parser.add_argument('--seed', default=123, type=int)
parser.add_argument('--show-test', action="store_true")
# --
# Validate args
args = parser.parse_args()
args.cuda = not args.no_cuda
assert args.prep_class in prep_lookup.keys(), 'parse_args: prep_class not in %s' % str(prep_lookup.keys())
assert args.aggregator_class in aggregator_lookup.keys(), 'parse_args: aggregator_class not in %s' % str(aggregator_lookup.keys())
assert args.batch_size > 1, 'parse_args: batch_size must be > 1'
return args
if __name__ == "__main__":
args = parse_args()
set_seeds(args.seed)
# --
# Load problem
problem = NodeProblem(problem_path=args.problem_path, cuda=args.cuda)
# --
# Define model
n_train_samples = map(int, args.n_train_samples.split(','))
n_val_samples = map(int, args.n_val_samples.split(','))
output_dims = map(int, args.output_dims.split(','))
model = GSSupervised(**{
"sampler_class" : sampler_lookup[args.sampler_class],
"adj" : problem.adj,
"train_adj" : problem.train_adj,
"prep_class" : prep_lookup[args.prep_class],
"aggregator_class" : aggregator_lookup[args.aggregator_class],
"input_dim" : problem.feats_dim,
"n_nodes" : problem.n_nodes,
"n_classes" : problem.n_classes,
"layer_specs" : [
{
"n_train_samples" : n_train_samples[0],
"n_val_samples" : n_val_samples[0],
"output_dim" : output_dims[0],
"activation" : F.relu,
},
{
"n_train_samples" : n_train_samples[1],
"n_val_samples" : n_val_samples[1],
"output_dim" : output_dims[1],
"activation" : lambda x: x,
},
],
"lr_init" : args.lr_init,
"lr_schedule" : args.lr_schedule,
"weight_decay" : args.weight_decay,
})
if args.cuda:
model = model.cuda()
print(model, file=sys.stderr)
# --
# Train
set_seeds(args.seed ** 2)
start_time = time()
val_metric = None
for epoch in range(args.epochs):
# Train
_ = model.train()
for ids, targets, epoch_progress in problem.iterate(mode='train', shuffle=True, batch_size=args.batch_size):
model.set_progress((epoch + epoch_progress) / args.epochs)
preds = model.train_step(
ids=ids,
feats=problem.feats,
targets=targets,
loss_fn=problem.loss_fn,
)
train_metric = problem.metric_fn(to_numpy(targets), to_numpy(preds))
print(json.dumps({
"epoch" : epoch,
"epoch_progress" : epoch_progress,
"train_metric" : train_metric,
"val_metric" : val_metric,
"time" : time() - start_time,
}, double_precision=5))
sys.stdout.flush()
# Evaluate
_ = model.eval()
val_metric = evaluate(model, problem, mode='val')
print('-- done --', file=sys.stderr)
print(json.dumps({
"epoch" : epoch,
"train_metric" : train_metric,
"val_metric" : val_metric,
"time" : time() - start_time,
}, double_precision=5))
sys.stdout.flush()
if args.show_test:
print(json.dumps({
"test_f1" : evaluate(model, problem, mode='test')
}, double_precision=5))