forked from skypilot-org/skypilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_app.py
79 lines (58 loc) · 2.51 KB
/
example_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
"""Assumptions:
- Users supply a time estimator func for each node in the DAG.
- Assuming homogeneous instances:
- Support for choosing # instances
- Support for heterogeneous instances?
Optimization problem:
- min cost, subject to some constraints?
- min latency, subject to some constraints?
DAG assumption: chain. If multiple branches, take into account of parallelism?
Incorporate the notion of region/zone (affects pricing).
Incorporate the notion of per-account egress quota (affects pricing).
"""
import sky
import time_estimators
def make_application():
"""A simple application: train_op -> infer_op."""
with sky.Dag() as dag:
# Train.
train_op = sky.Task(
'train_op',
run='python train.py --data_dir=INPUTS[0] --model_dir=OUTPUTS[0]')
train_op.set_inputs(
's3://my-imagenet-data',
# estimated_size_gigabytes=150,
# estimated_size_gigabytes=1500,
estimated_size_gigabytes=600,
)
# 'CLOUD': saves to the cloud this op ends up executing on.
train_op.set_outputs('CLOUD://my-model', estimated_size_gigabytes=0.1)
train_op.set_resources({
sky.Resources(sky.AWS(), 'p3.2xlarge'), # 1 V100, EC2.
sky.Resources(sky.AWS(), 'p3.8xlarge'), # 4 V100s, EC2.
# Tuples mean all resources are required.
sky.Resources(sky.GCP(), 'n1-standard-8', accelerators='tpu-v3-8'),
})
train_op.set_time_estimator(time_estimators.resnet50_estimate_runtime)
# Infer.
infer_op = sky.Task('infer_op',
run='python infer.py --model_dir=INPUTS[0]')
# Data dependency.
# FIXME: make the system know this is from train_op's outputs.
infer_op.set_inputs(train_op.get_outputs(),
estimated_size_gigabytes=0.1)
infer_op.set_resources({
sky.Resources(sky.AWS(), 'inf1.2xlarge'),
sky.Resources(sky.AWS(), 'p3.2xlarge'),
sky.Resources(sky.GCP(), 'n1-standard-4', accelerators='T4'),
sky.Resources(sky.GCP(), 'n1-standard-8', accelerators='T4'),
})
infer_op.set_time_estimator(
time_estimators.resnet50_infer_estimate_runtime)
# Chain the tasks (Airflow syntax).
# The dependency represents data flow.
train_op >> infer_op
return dag
dag = make_application()
sky.optimize(dag, minimize=sky.OptimizeTarget.COST)
# sky.optimize(dag, minimize=sky.OptimizeTarget.TIME)