diff --git a/frigate/config/semantic_search.py b/frigate/config/semantic_search.py index f0eb5d98c8..aa509910ec 100644 --- a/frigate/config/semantic_search.py +++ b/frigate/config/semantic_search.py @@ -32,6 +32,9 @@ class FaceRecognitionConfig(FrigateBaseModel): min_area: int = Field( default=500, title="Min area of face box to consider running face recognition." ) + debug_save_images: bool = Field( + default=False, title="Save images of face detections for debugging." + ) class LicensePlateRecognitionConfig(FrigateBaseModel): diff --git a/frigate/embeddings/maintainer.py b/frigate/embeddings/maintainer.py index 174f3a60a6..3257477614 100644 --- a/frigate/embeddings/maintainer.py +++ b/frigate/embeddings/maintainer.py @@ -476,13 +476,26 @@ def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> None: sub_label, score = res + # calculate the overall face score as the probability * area of face + # this will help to reduce false positives from small side-angle faces + # if a large front-on face image may have scored slightly lower but + # is more likely to be accurate due to the larger face area + face_score = round(score * face_frame.shape[0] * face_frame.shape[1], 2) + logger.debug( - f"Detected best face for person as: {sub_label} with score {score}" + f"Detected best face for person as: {sub_label} with probability {score} and overall face score {face_score}" ) - if id in self.detected_faces and score <= self.detected_faces[id]: + if self.config.face_recognition.debug_save_images: + # write face to library + folder = os.path.join(FACE_DIR, "debug") + file = os.path.join(folder, f"{id}-{sub_label}-{score}-{face_score}.webp") + os.makedirs(folder, exist_ok=True) + cv2.imwrite(file, face_frame) + + if id in self.detected_faces and face_score <= self.detected_faces[id]: logger.debug( - f"Recognized face distance {score} is less than previous face distance ({self.detected_faces.get(id)})." + f"Recognized face distance {score} and overall score {face_score} is less than previous overall face score ({self.detected_faces.get(id)})." ) return @@ -496,7 +509,7 @@ def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> None: ) if resp.status_code == 200: - self.detected_faces[id] = score + self.detected_faces[id] = face_score def _detect_license_plate(self, input: np.ndarray) -> tuple[int, int, int, int]: """Return the dimensions of the input image as [x, y, width, height].""" diff --git a/frigate/util/model.py b/frigate/util/model.py index b3e3102253..2709b4594a 100644 --- a/frigate/util/model.py +++ b/frigate/util/model.py @@ -170,6 +170,7 @@ def __init__(self, config: FaceRecognitionConfig, db: SqliteQueueDatabase): ) ) self.label_map: dict[int, str] = {} + self.__build_classifier() def __build_classifier(self) -> None: labels = [] @@ -177,6 +178,9 @@ def __build_classifier(self) -> None: dir = "/media/frigate/clips/faces" for idx, name in enumerate(os.listdir(dir)): + if name == "debug": + continue + self.label_map[idx] = name face_folder = os.path.join(dir, name) for image in os.listdir(face_folder): @@ -248,6 +252,7 @@ def __align_face( def clear_classifier(self) -> None: self.classifier = None self.labeler = None + self.label_map = {} def classify_face(self, face_image: np.ndarray) -> Optional[tuple[str, float]]: if not self.label_map: