-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
236 lines (200 loc) · 9.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Written by W.T. Chung
import os
import torch
import pytorch_lightning as pl
import time
from pytorch_lightning.strategies import DDPStrategy
import numpy as np
# import matplotlib.pyplot as plt
import multiprocessing
print("CPU count:", multiprocessing.cpu_count())
# %%
from models.litmodel import LitModel
from models.rrdb import init_rrdb
from models.rcan import init_rcan
from models.edsr import init_edsr
from models.convfno import init_convfno
from common import data
# %%
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--num_workers", type=int, default=6)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--nepochs", type=int, default=600)
parser.add_argument("--ckpt_name", type=str, default="last.ckpt")
parser.add_argument("--num_nodes", type=int, default=1)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--upscale", type=int, default=8)
parser.add_argument("--train_meta", type=str, default='./metadata/train_data_summary.csv')
parser.add_argument("--val_meta", type=str, default='./metadata/val_data_summary.csv')
parser.add_argument("--data_path", type=str, default='./data/sample/')
parser.add_argument("--port", type=int, default=55001)
parser.add_argument("--tune",action='store_true')
parser.add_argument("--fast_dev_run", type=int, default=0)
parser.add_argument("--profiler",type=str,default=None)
parser.add_argument("--accumulate_grad_batches",type=int,default=1)
parser.add_argument("--approx_param",type=str,default='0.5M')
parser.add_argument("--log_gpu_memory",action='store_true')
parser.add_argument("--timeit", action='store_true')
parser.add_argument("--gpu",type=int,default=4)
parser.add_argument("--save_period",type=int,default=1)
parser.add_argument("--max_time",type=str,default="00:11:58:00")
parser.add_argument("--precision",type=int,default=16)
parser.add_argument("--rank_file",type=str,default='../rank_file.txt')
parser.add_argument("--mode",type=str,default='pbatch')
parser.add_argument("--case_name",type=str,default='tmp')
parser.add_argument("--loss_type", type=str, default='mse', help='mse | mse_grad')
parser.add_argument("--model_type", type=str, default='rrdb', help='rrdb | edsr | rcan ')
parser.add_argument("--grad_loss_weight", type=float, default=0.99)
parser.add_argument("--lr_sched_factor",type=int,default=0.5,help='lr scheduler multiplier')
parser.set_defaults(tune=False)
parser.set_defaults(timeit=True)
parser.set_defaults(log_gpu_memory=False)
args = parser.parse_args()
learning_rate = args.learning_rate
num_workers = args.num_workers
nepochs = args.nepochs
batch_size = args.batch_size
ckpt_name = args.ckpt_name
num_nodes = args.num_nodes
seed = args.seed
upscale = args.upscale
train_meta = args.train_meta
val_meta = args.val_meta
data_path = args.data_path
port = args.port
tune = args.tune
num_nodes = args.num_nodes
fast_dev_run = args.fast_dev_run
profiler = args.profiler
accumulate_grad_batches = args.accumulate_grad_batches
approx_param = args.approx_param
log_gpu_memory = args.log_gpu_memory
timeit = args.timeit
gpu = args.gpu
save_period = args.save_period
max_time = args.max_time
precision = args.precision
rank_file = args.rank_file
mode = args.mode
case_name = args.case_name
loss_type = args.loss_type
model_type = args.model_type
grad_loss_weight = args.grad_loss_weight
lr_sched_factor=args.lr_sched_factor
# must be set before main block
### this block is specfic for IBM LSF based multi-node multi-gpu training on LLNL Lassen ###
os.environ["WORLD_SIZE"] = str(num_nodes*gpu)
world_rank = int(os.environ.get('OMPI_COMM_WORLD_RANK'))
info = np.loadtxt(rank_file,delimiter=',',dtype=str)
master_addr = info[0]
port = info[1]
os.environ['MASTER_PORT'] = str(port)
os.environ["NODE_RANK"] = str(world_rank//gpu)
os.environ["LOCAL_RANK"] = str(world_rank%gpu)
os.environ['MASTER_ADDR'] = master_addr
print("WORLD_RANK: ",world_rank,", NODE_RANK: ",os.environ["NODE_RANK"],", LOCAL_RANK: ",os.environ["LOCAL_RANK"], ", WORLD_SIZE: ",os.environ["WORLD_SIZE"],
", MASTER_PORT: ",os.environ['MASTER_PORT'],", MASTER_ADDR: ",os.environ['MASTER_ADDR'])
####### replace this block with your own multi-node multi-gpu env setup ####################
detect_anomaly = False
#debug settings
if mode == 'pdebug':
nepochs = save_period*2
log_gpu_memory = True
profiler = 'simple'
detect_anomaly = True
#define save dirs
log_dir = './logs/'+mode+'/'+case_name
checkpoint_dir = '../ckpt/'+mode+'/'+case_name+'/'
if __name__ == '__main__':
# %%
pl.seed_everything(seed)
my_mean,my_std = data.get_mean_std()
assert my_mean is not None and my_std is not None, 'Please provide mean and std for the dataset'
# %%
if './metadata/train_data_summary' in train_meta:
dx_min = 3.906250185536919e-06
else:
raise ValueError('Please provide the correct train_meta file')
#DataLoader setup
train_dict = data.my_read_csv(train_meta)
val_dict = data.my_read_csv(val_meta)
scale_transform = data.ScaleTransform(my_mean,my_std)
train_ds = data.MyDataset(train_dict,data_path,'train',upscale,scale_transform,scale_transform,dx_min)
train_loader = torch.utils.data.DataLoader(train_ds,batch_size=batch_size,
shuffle=True,num_workers=num_workers,pin_memory=True)
val_ds = data.MyDataset(val_dict,data_path,'val',upscale,scale_transform,scale_transform,dx_min)
val_loader = torch.utils.data.DataLoader(val_ds,batch_size=batch_size,
shuffle=False,num_workers=num_workers,pin_memory=True)
#get output from train_loader
X0,Y0,_,_,_ = next(iter(train_loader))
train_ds_len = len(train_ds)
if world_rank == 0:
print("Train size: ",train_ds_len)
print("Val size: ",len(val_ds))
print("num_workers: ",num_workers)
print("X shape: ",X0.shape)
print("Y shape: ",Y0.shape)
print("Effective Batch size: ",batch_size*accumulate_grad_batches*num_nodes*gpu)
# Model setup
if model_type == 'rrdb':
model = init_rrdb(approx_param=approx_param,upscale=upscale)
find_unused_parameters = False
elif model_type == 'rcan':
model = init_rcan(approx_param=approx_param,upscale=upscale)
elif model_type == 'edsr':
model = init_edsr(approx_param=approx_param,upscale=upscale)
elif model_type == 'convfno':
model = init_convfno(approx_param=approx_param,upscale=upscale)
else:
raise ValueError('Please provide the correct model_type')
model = LitModel(model=model,mean=my_mean,std=my_std,learning_rate=learning_rate,loss_type=loss_type,lr_sched_factor = lr_sched_factor,
grad_loss_weight=grad_loss_weight)
find_unused_parameters = False
#generic cluster environment for multi-node multi-gpu training
plugin_list = [pl.plugins.environments.LightningEnvironment()]
#call backs for saving best mse and save every 10*5 epochs
loss_callback = pl.callbacks.ModelCheckpoint(dirpath=checkpoint_dir, save_top_k=3, every_n_epochs = save_period,
monitor="val_mseloss", mode="min",save_last=True,
save_on_train_epoch_end=False,
filename='model-{epoch:02d}-{val_mseloss:.4e}')
epoch_callback = pl.callbacks.ModelCheckpoint(dirpath=checkpoint_dir, save_top_k=-1, every_n_epochs = 10*save_period,
monitor="epoch", mode="max",save_last=False,
save_on_train_epoch_end=False,
filename='model-{epoch:02d}')
callback_list = [loss_callback,epoch_callback]
#for profiling
if log_gpu_memory == True:
gpu_call_back = pl.callbacks.DeviceStatsMonitor()
if callback_list is not None:
callback_list.append(gpu_call_back)
else:
callback_list = [gpu_call_back]
#set up csv logger
csv_logger = pl.loggers.CSVLogger(save_dir=log_dir, name="csv_logs",
flush_logs_every_n_steps=save_period*train_ds_len//(batch_size*num_nodes*gpu))
my_logger = [csv_logger]
#Train!
trainer = pl.Trainer(logger=my_logger,max_epochs=nepochs,
max_time=max_time,
accelerator="gpu", devices=gpu,strategy=DDPStrategy(find_unused_parameters=find_unused_parameters),
num_nodes=num_nodes, sync_batchnorm=True, precision=precision,
log_every_n_steps = 1, deterministic=True,detect_anomaly =detect_anomaly,
accumulate_grad_batches=accumulate_grad_batches,
plugins=plugin_list,callbacks=callback_list,
check_val_every_n_epoch=save_period,
fast_dev_run = fast_dev_run, profiler=profiler)
if world_rank == 0:
print('Training...')
if world_rank == 0:
if timeit:
start_time = time.time()
if os.path.exists(checkpoint_dir+ckpt_name):
trainer.fit(model=model, train_dataloaders=train_loader,val_dataloaders=val_loader,ckpt_path=checkpoint_dir+ckpt_name)
else:
trainer.fit(model=model, train_dataloaders=train_loader,val_dataloaders=val_loader)
if timeit:
end_time = time.time()
if world_rank == 0:
print('Training time: ' + str((end_time-start_time)/60))