-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy patheval.py
209 lines (176 loc) · 6.32 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from dataclasses import dataclass
from itertools import chain
from datasets import load_dataset
from tqdm import tqdm
import torch
from flax.training.common_utils import onehot, shard
from flax import jax_utils, serialization
import optax
import jax
import jax.numpy as jnp
from jax.sharding import PartitionSpec as P
import os
import math
import numpy as np
from transformers import (
HfArgumentParser,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForCausalLM,
)
from functools import partial
from types import SimpleNamespace
from tokenizers import pre_tokenizers
import regex as re
from jax.experimental.multihost_utils import (
host_local_array_to_global_array,
global_array_to_host_local_array,
process_allgather,
)
import copy
from zett.tokenizer_converters import convert_to_byte_level
from zett.model import (
MODEL_PARALLEL_MAPS,
IN_EMBEDDING_PATHS,
OUT_EMBEDDING_PATHS,
)
from zett.utils import keystr, tokenize_function, load_params, get_batch_pspecs
from zett.collator import Collator
@dataclass
class Args:
model_path: str
tokenizer_name: str = None
revision: str = None
data_file: str = "datasets/valid/python.parquet"
batch_size: int = 512
block_size: int = 128
preprocessing_num_workers: int = 64
n_subsample: int = None
data_mode: str = "chunk"
sample_text_span: bool = False
use_bias: bool = False
add_bos: bool = False
dtype: str = "bfloat16"
if __name__ == "__main__":
(args,) = HfArgumentParser([Args]).parse_args_into_dataclasses()
if args.tokenizer_name is not None:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name)
else:
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
tokenizer.eos_token_id = (
tokenizer.pad_token_id
) = 0 # TODO: this is potentially problematic, should add to the tokenizer instead
config = AutoConfig.from_pretrained(args.model_path)
model = FlaxAutoModelForCausalLM.from_config(
config=config,
dtype=getattr(jnp, args.dtype),
_do_init=False,
)
model_parallel_keys = MODEL_PARALLEL_MAPS.get(config.model_type, {})
in_embedding_path = IN_EMBEDDING_PATHS[config.model_type]
out_embedding_path = OUT_EMBEDDING_PATHS[config.model_type]
def get_pspec(path, v):
path_tuple = tuple(str(keystr(x)) for x in path)
path = ".".join(path_tuple)
for key, value in model_parallel_keys.items():
if re.match(key, path):
pspec = value
print(f"Sharding {path} with {pspec}.")
return P(*pspec)
return P(*([None] * (np.array(v).ndim)))
MESH = jax.sharding.Mesh(
np.array(jax.local_devices()).reshape((1, -1)), ["data", "model"]
)
params = load_params(args.model_path, revision=args.revision)
param_specs = jax.tree_util.tree_map_with_path(get_pspec, params)
params = host_local_array_to_global_array(params, MESH, param_specs)
dataset = load_dataset(
"parquet",
data_files={"train": args.data_file},
split=f"train[:{args.n_subsample}]"
if args.n_subsample is not None
else "train",
)
if args.data_mode == "chunk":
dataset = dataset.map(
partial(tokenize_function, block_size=args.block_size, tokenizer=tokenizer),
batched=True,
remove_columns=dataset.column_names,
num_proc=args.preprocessing_num_workers,
)
dataset.set_format("numpy")
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
drop_last=True,
shuffle=False,
)
if args.use_bias:
bias = serialization.msgpack_restore(
open(os.path.join(args.model_path, "bias.msgpack"), "rb").read()
)[None, None]
else:
bias = None
@jax.jit
def step(params, batch):
labels = batch.pop("labels", batch["input_ids"])
logits = model(
**{k: v for k, v in batch.items() if v is not None},
params=params,
)[0]
if args.use_bias:
logits = logits + bias
shift_logits = logits[..., :-1, :]
shift_labels = labels[..., 1:]
loss = optax.softmax_cross_entropy(
shift_logits, onehot(shift_labels, shift_logits.shape[-1])
)
return loss
losses = []
chars_per_token = []
bpcs = []
for batch in tqdm(dataloader):
batch = {
k: (v.numpy() if isinstance(v, torch.Tensor) else v)
for k, v in batch.items()
if k in {"input_ids", "attention_mask", "offset_mapping"}
}
if args.add_bos:
batch["input_ids"] = np.pad(
batch["input_ids"][:, :-1],
((0, 0), (1, 0)),
constant_values=tokenizer.bos_token_id,
)
if "attention_mask" in batch:
batch["attention_mask"] = np.pad(
batch["attention_mask"][:, :-1], ((0, 0), (1, 0)), constant_values=1
)
if "offset_mapping" in batch:
batch["offset_mapping"] = np.pad(
batch["offset_mapping"][:, :-1],
((0, 0), (1, 0), (0, 0)),
constant_values=0,
)
offsets_mapping = batch.pop("offset_mapping", None)
batch_specs = get_batch_pspecs(batch)
batch = host_local_array_to_global_array(batch, MESH, batch_specs)
loss = step(params, batch)
loss = np.array(loss)
special_tokens_mask = np.isin(batch["input_ids"], tokenizer.all_special_ids)
loss *= (
1 - special_tokens_mask[..., 1:]
) # do not count special tokens in loss and bpc
losses.extend(np.array(loss.mean(-1)))
if offsets_mapping is not None:
cpt = offsets_mapping[:, 1:, 1] - offsets_mapping[:, 1:, 0]
bpc = loss.sum(-1) / np.maximum(cpt.sum(-1), 1)
chars_per_token.extend(cpt.mean(-1))
bpcs.extend(bpc)
losses = np.stack(losses)
print("Avg. loss:", sum(losses) / len(losses))
print(
"Avg. chars per token:",
sum(chars_per_token) / len(chars_per_token) if len(chars_per_token) > 0 else 0,
)
print("Avg. bpc:", sum(bpcs) / len(bpcs) if len(bpcs) > 0 else 0)
print("Avg. perplexity:", math.exp(sum(losses) / len(losses)))