forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_clusterplot.m
478 lines (434 loc) · 19.6 KB
/
ft_clusterplot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
function [cfg] = ft_clusterplot(cfg, stat)
% FT_CLUSTERPLOT plots a series of topographies with highlighted clusters.
%
% Use as
% ft_clusterplot(cfg, stat)
% where the input data is obtained from FT_TIMELOCKSTATISTICS or FT_FREQSTATISTICS.
%
% The configuration options can be
% cfg.alpha = number, highest cluster p-value to be plotted max 0.3 (default = 0.05)
% cfg.highlightseries = 1x5 cell-array, highlight option series with 'on', 'labels' or 'numbers' (default {'on', 'on', 'on', 'on', 'on'} for p < [0.01 0.05 0.1 0.2 0.3]
% cfg.highlightsymbolseries = 1x5 vector, highlight marker symbol series (default ['*', 'x', '+', 'o', '.'] for p < [0.01 0.05 0.1 0.2 0.3]
% cfg.highlightsizeseries = 1x5 vector, highlight marker size series (default [6 6 6 6 6] for p < [0.01 0.05 0.1 0.2 0.3])
% cfg.highlightcolorpos = color of highlight marker for positive clusters (default = [0 0 0])
% cfg.highlightcolorneg = color of highlight marker for negative clusters (default = [0 0 0])
% cfg.subplotsize = layout of subplots ([h w], default [3 5])
% cfg.saveaspng = string, filename of the output figures (default = 'no')
% cfg.visible = string, 'on' or 'off' whether figure will be visible (default = 'on')
%
% You can also specify all cfg options that apply to FT_TOPOPLOTER or FT_TOPOPLOTTFR,
% except for cfg.xlim, any of the highlight options, cfg.comment and cfg.commentpos.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% If you specify this option the input data will be read from a *.mat
% file on disk. This mat files should contain only a single variable named 'data',
% corresponding to the input structure.
%
% See also FT_TOPOPLOTTFR, FT_TOPOPLOTER, FT_MOVIEPLOTTFR, FT_MOVIEPLOTER
% Copyright (C) 2007, F.C. Donders Centre, Ingrid Nieuwenhuis
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar stat
ft_preamble provenance stat
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
ws = ft_warning('off', 'FieldTrip:getdimord:warning_dimord_could_not_be_determined');
% check if the input data is valid for this function
stat = ft_checkdata(stat, 'datatype', {'timelock', 'freq'}, 'feedback', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'hlmarkerseries', 'highlightsymbolseries'});
cfg = ft_checkconfig(cfg, 'renamed', {'hlmarkersizeseries', 'highlightsizeseries'});
cfg = ft_checkconfig(cfg, 'renamed', {'hlcolorpos', 'highlightcolorpos'});
cfg = ft_checkconfig(cfg, 'renamed', {'hlcolorneg', 'highlightcolorneg'});
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'});
cfg = ft_checkconfig(cfg, 'deprecated', {'hllinewidthseries'});
cfg = ft_checkconfig(cfg, 'deprecated', {'xparam', 'yparam'});
% added several forbidden options
cfg = ft_checkconfig(cfg, 'forbidden', {'highlight', ...
'highlightchannel', ...
'highlightsymbol', ...
'highlightcolor', ...
'highlightsize', ...
'highlightfontsize', ...
'xlim', ...
'comment', ...
'commentpos'});
% set the defaults
cfg.highlightseries = ft_getopt(cfg, 'highlightseries', {'on', 'on', 'on', 'on', 'on'});
cfg.highlightsymbolseries = ft_getopt(cfg, 'highlightsymbolseries', ['*', 'x', '+', 'o', '.']);
cfg.highlightsizeseries = ft_getopt(cfg, 'highlightsizeseries', [6 6 6 6 6]);
cfg.hllinewidthseries = ft_getopt(cfg, 'hllinewidthseries', [1 1 1 1 1]);
cfg.highlightfontsizeseries = ft_getopt(cfg, 'highlightfontsizeseries', [8 8 8 8 8]);
cfg.highlightcolorpos = ft_getopt(cfg, 'highlightcolorpos', [0 0 0]);
cfg.highlightcolorneg = ft_getopt(cfg, 'highlightcolorneg', [0 0 0]);
cfg.marker = ft_getopt(cfg, 'marker', 'off');
cfg.alpha = ft_getopt(cfg, 'alpha', 0.05);
cfg.parameter = ft_getopt(cfg, 'parameter', 'stat');
cfg.saveaspng = ft_getopt(cfg, 'saveaspng', 'no');
cfg.subplotsize = ft_getopt(cfg, 'subplotsize', [3 5]);
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
cfg.visible = ft_getopt(cfg, 'visible', 'on');
% error if cfg.highlightseries is not a cell, for possible confusion with cfg-options
if ~iscell(cfg.highlightseries)
ft_error('cfg.highlightseries should be a cell-array of strings')
end
% get the options that are specific for topoplotting
cfgtopo = keepfields(cfg, {'parameter', 'marker', 'markersymbol', 'markercolor', 'markersize', 'markerfontsize', 'style', 'gridscale', 'interplimits', 'interpolation', 'contournum', 'colorbar', 'shading', 'zlim'});
% prepare the layout, this only has to be done once
cfgtopo.layout = ft_prepare_layout(cfg, stat);
cfgtopo.showcallinfo = 'no';
cfgtopo.feedback = 'no';
% handle with the data, it should be 1D or 2D
dimord = getdimord(stat, cfg.parameter);
dimtok = tokenize(dimord, '_');
dimsiz = getdimsiz(stat, cfg.parameter);
dimsiz(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions
switch dimord
case 'chan'
is2D = false;
case 'chan_time'
is2D = true;
case 'chan_freq'
is2D = true;
case 'chan_freq_time'
% no more than two dimensions are supported, we can ignore singleton dimensions
is2D = true;
if dimsiz(2)==1
stat = rmfield(stat, 'freq');
stat.dimord = 'chan_time';
% remove the singleton dimension in the middle
stat.(cfg.parameter) = reshape(stat.(cfg.parameter),dimsiz([1 3]));
if isfield(stat, 'posclusterslabelmat')
stat.posclusterslabelmat = reshape(stat.posclusterslabelmat, dimsiz([1 3]));
end
if isfield(stat, 'negclusterslabelmat')
stat.negclusterslabelmat = reshape(stat.negclusterslabelmat, dimsiz([1 3]));
end
elseif dimsiz(3)==1
stat = rmfield(stat, 'time');
stat.dimord = 'chan_freq';
% no need to remove the singleton dimension at the end
else
ft_error('this only works if either frequency or time is a singleton dimension');
end
otherwise
ft_error('unsupported dimord %s', dimord);
end % switch dimord
% these are not valid any more
clear dimord dimsiz
% this determines the labels in the figure
hastime = isfield(stat, 'time');
hasfreq = isfield(stat, 'freq');
% use the vector time, even though the 2nd dimension might be freq
if hastime
time = stat.time;
elseif hasfreq
time = stat.freq;
end
if issubfield(stat, 'cfg.correcttail') && ((strcmp(stat.cfg.correcttail, 'alpha') || strcmp(stat.cfg.correcttail, 'prob')) && (stat.cfg.tail == 0));
if ~(cfg.alpha >= stat.cfg.alpha)
ft_warning(['the pvalue you plot: cfg.alpha = ' num2str(cfg.alpha) ' is higher than the correcttail option you tested: stat.cfg.alpha = ' num2str(stat.cfg.alpha)]);
end
end
% find significant clusters
sigpos = [];
signeg = [];
haspos = isfield(stat, 'posclusters');
hasneg = isfield(stat, 'negclusters');
if haspos == 0 && hasneg == 0
fprintf('%s\n', 'no significant clusters in data; nothing to plot')
else
if haspos
for iPos = 1:length(stat.posclusters)
sigpos(iPos) = stat.posclusters(iPos).prob < cfg.alpha;
end
end
if hasneg
for iNeg = 1:length(stat.negclusters)
signeg(iNeg) = stat.negclusters(iNeg).prob < cfg.alpha;
end
end
sigpos = find(sigpos == 1);
signeg = find(signeg == 1);
Nsigpos = length(sigpos);
Nsigneg = length(signeg);
Nsigall = Nsigpos + Nsigneg;
if Nsigall == 0
ft_error('no clusters present with a p-value lower than the specified alpha, nothing to plot')
end
% make clusterslabel matrix per significant cluster
if haspos
posCLM = stat.posclusterslabelmat;
sigposCLM = zeros(size(posCLM));
probpos = [];
for iPos = 1:length(sigpos)
sigposCLM(:,:,iPos) = (posCLM == sigpos(iPos));
probpos(iPos) = stat.posclusters(iPos).prob;
hlsignpos(iPos) = prob2hlsign(probpos(iPos), cfg.highlightsymbolseries);
end
else
posCLM = [];
sigposCLM = [];
probpos = [];
end
if hasneg
negCLM = stat.negclusterslabelmat;
signegCLM = zeros(size(negCLM));
probneg = [];
for iNeg = 1:length(signeg)
signegCLM(:,:,iNeg) = (negCLM == signeg(iNeg));
probneg(iNeg) = stat.negclusters(iNeg).prob;
hlsignneg(iNeg) = prob2hlsign(probneg(iNeg), cfg.highlightsymbolseries);
end
else % no negative clusters
negCLM = [];
signegCLM = [];
probneg = [];
end
fprintf('There are %d clusters smaller than alpha (%g)\n', Nsigall, cfg.alpha);
if is2D
% define time or freq window per cluster
for iPos = 1:length(sigpos)
possum_perclus = sum(sigposCLM(:,:,iPos),1); %sum over chans for each time- or freq-point
ind_min = find(possum_perclus~=0, 1 );
ind_max = find(possum_perclus~=0, 1, 'last' );
time_perclus = [time(ind_min) time(ind_max)];
if hastime
fprintf('%s%s%s%s%s%s%s%s%s%s%s\n', 'Positive cluster: ',num2str(sigpos(iPos)), ', pvalue: ',num2str(probpos(iPos)), ' (',hlsignpos(iPos), ')', ', t = ',num2str(time_perclus(1)), ' to ',num2str(time_perclus(2)))
elseif hasfreq
fprintf('%s%s%s%s%s%s%s%s%s%s%s\n', 'Positive cluster: ',num2str(sigpos(iPos)), ', pvalue: ',num2str(probpos(iPos)), ' (',hlsignpos(iPos), ')', ', f = ',num2str(time_perclus(1)), ' to ',num2str(time_perclus(2)))
end
end
for iNeg = 1:length(signeg)
negsum_perclus = sum(signegCLM(:,:,iNeg),1);
ind_min = find(negsum_perclus~=0, 1 );
ind_max = find(negsum_perclus~=0, 1, 'last' );
time_perclus = [time(ind_min) time(ind_max)];
if hastime
time_perclus = [time(ind_min) time(ind_max)];
fprintf('%s%s%s%s%s%s%s%s%s%s%s\n', 'Negative cluster: ',num2str(signeg(iNeg)), ', pvalue: ',num2str(probneg(iNeg)), ' (',hlsignneg(iNeg), ')', ', t = ',num2str(time_perclus(1)), ' to ',num2str(time_perclus(2)))
elseif hasfreq
fprintf('%s%s%s%s%s%s%s%s%s%s%s\n', 'Negative cluster: ',num2str(signeg(iNeg)), ', pvalue: ',num2str(probneg(iNeg)), ' (',hlsignneg(iNeg), ')', ', f = ',num2str(time_perclus(1)), ' to ',num2str(time_perclus(2)))
end
end
% define time- or freq-window containing all significant clusters
possum = sum(sigposCLM,3); %sum over Chans for timevector
possum = sum(possum,1);
negsum = sum(signegCLM,3);
negsum = sum(negsum,1);
if haspos && hasneg
allsum = possum + negsum;
elseif haspos
allsum = possum;
else
allsum = negsum;
end
ind_timewin_min = find(allsum~=0, 1 );
ind_timewin_max = find(allsum~=0, 1, 'last' );
timewin = time(ind_timewin_min:ind_timewin_max);
else
for iPos = 1:length(sigpos)
fprintf('%s%s%s%s%s%s%s\n', 'Positive cluster: ',num2str(sigpos(iPos)), ', pvalue: ',num2str(probpos(iPos)), ' (',hlsignpos(iPos), ')')
end
for iNeg = 1:length(signeg)
fprintf('%s%s%s%s%s%s%s\n', 'Negative cluster: ',num2str(signeg(iNeg)), ', pvalue: ',num2str(probneg(iNeg)), ' (',hlsignneg(iNeg), ')')
end
end
% setup highlight options for all clusters and make comment for 1D data
compos = [];
comneg = [];
for iPos = 1:length(sigpos)
if stat.posclusters(sigpos(iPos)).prob < 0.01
cfgtopo.highlight{iPos} = cfg.highlightseries{1};
cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(1);
cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(1);
cfgtopo.highlightfontsize{iPos} = cfg.highlightfontsizeseries(1);
elseif stat.posclusters(sigpos(iPos)).prob < 0.05
cfgtopo.highlight{iPos} = cfg.highlightseries{2};
cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(2);
cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(2);
cfgtopo.highlightfontsize{iPos} = cfg.highlightfontsizeseries(2);
elseif stat.posclusters(sigpos(iPos)).prob < 0.1
cfgtopo.highlight{iPos} = cfg.highlightseries{3};
cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(3);
cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(3);
cfgtopo.highlightfontsize{iPos} = cfg.highlightfontsizeseries(3);
elseif stat.posclusters(sigpos(iPos)).prob < 0.2
cfgtopo.highlight{iPos} = cfg.highlightseries{4};
cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(4);
cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(4);
cfgtopo.highlightfontsize{iPos} = cfg.highlightfontsizeseries(4);
elseif stat.posclusters(sigpos(iPos)).prob < 0.3
cfgtopo.highlight{iPos} = cfg.highlightseries{5};
cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(5);
cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(5);
cfgtopo.highlightfontsize{iPos} = cfg.highlightfontsizeseries(5);
end
cfgtopo.highlightcolor{iPos} = cfg.highlightcolorpos;
compos = strcat(compos,cfgtopo.highlightsymbol{iPos}, 'p=',num2str(probpos(iPos)), ' '); % make comment, only used for 1D data
end
for iNeg = 1:length(signeg)
if stat.negclusters(signeg(iNeg)).prob < 0.01
cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{1};
cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(1);
cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(1);
cfgtopo.highlightfontsize{length(sigpos)+iNeg} = cfg.highlightfontsizeseries(1);
elseif stat.negclusters(signeg(iNeg)).prob < 0.05
cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{2};
cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(2);
cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(2);
cfgtopo.highlightfontsize{length(sigpos)+iNeg} = cfg.highlightfontsizeseries(2);
elseif stat.negclusters(signeg(iNeg)).prob < 0.1
cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{3};
cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(3);
cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(3);
cfgtopo.highlightfontsize{length(sigpos)+iNeg} = cfg.highlightfontsizeseries(3);
elseif stat.negclusters(signeg(iNeg)).prob < 0.2
cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{4};
cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(4);
cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(4);
cfgtopo.highlightfontsize{length(sigpos)+iNeg} = cfg.highlightfontsizeseries(4);
elseif stat.negclusters(signeg(iNeg)).prob < 0.3
cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{5};
cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(5);
cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(5);
cfgtopo.highlightfontsize{length(sigpos)+iNeg} = cfg.highlightfontsizeseries(5);
end
cfgtopo.highlightcolor{length(sigpos)+iNeg} = cfg.highlightcolorneg;
comneg = strcat(comneg,cfgtopo.highlightsymbol{length(sigpos)+iNeg}, 'p=',num2str(probneg(iNeg)), ' '); % make comment, only used for 1D data
end
if is2D
Npl = length(timewin);
else
Npl = 1;
end
numSubplots = prod(cfg.subplotsize);
Nfig = ceil(Npl/numSubplots);
% put channel indexes in list
if is2D
for iPl = 1:Npl
for iPos = 1:length(sigpos)
list{iPl}{iPos} = find(sigposCLM(:,ind_timewin_min+iPl-1,iPos) == 1);
end
for iNeg = 1:length(signeg)
list{iPl}{length(sigpos)+iNeg} = find(signegCLM(:,ind_timewin_min+iPl-1,iNeg) == 1);
end
end
else
for iPl = 1:Npl
for iPos = 1:length(sigpos)
list{iPl}{iPos} = find(sigposCLM(:,iPos) == 1);
end
for iNeg = 1:length(signeg)
list{iPl}{length(sigpos)+iNeg} = find(signegCLM(:,iNeg) == 1);
end
end
end
count = 0;
ft_progress('init', cfg.feedback, 'making subplots...');
ft_progress(count/Npl, 'making subplot %d from %d', count, Npl);
% make plots
for iPl = 1:Nfig
figure('visible', cfg.visible);
if is2D
if iPl < Nfig
for iT = 1:numSubplots
PlN = (iPl-1)*numSubplots + iT; % plotnumber
cfgtopo.xlim = [time(ind_timewin_min+PlN-1) time(ind_timewin_min+PlN-1)];
cfgtopo.highlightchannel = list{PlN};
if hastime
cfgtopo.comment = strcat('time: ',num2str(time(ind_timewin_min+PlN-1)), ' s');
elseif hasfreq
cfgtopo.comment = strcat('freq: ',num2str(time(ind_timewin_min+PlN-1)), ' Hz');
end
cfgtopo.commentpos = 'title';
subplot(cfg.subplotsize(1), cfg.subplotsize(2), iT);
count = count+1;
fprintf('making subplot %d from %d\n', count, Npl);
ft_topoplotTFR(cfgtopo, stat);
end
elseif iPl == Nfig
for iT = 1:Npl-(numSubplots*(Nfig-1))
PlN = (iPl-1)*numSubplots + iT; % plotnumber
cfgtopo.xlim = [time(ind_timewin_min+PlN-1) time(ind_timewin_min+PlN-1)];
cfgtopo.highlightchannel = list{PlN};
if hastime
cfgtopo.comment = strcat('time: ',num2str(time(ind_timewin_min+PlN-1)), ' s');
elseif hasfreq
cfgtopo.comment = strcat('freq: ',num2str(time(ind_timewin_min+PlN-1)), ' Hz');
end
cfgtopo.commentpos = 'title';
subplot(cfg.subplotsize(1), cfg.subplotsize(2), iT);
count = count+1;
fprintf('making subplot %d from %d\n', count, Npl);
ft_topoplotTFR(cfgtopo, stat);
end
end
else
cfgtopo.highlightchannel = list{1};
cfgtopo.comment = strcat(compos, comneg);
cfgtopo.commentpos = 'title';
count = count+1;
fprintf('making subplot %d from %d\n', count, Npl);
ft_topoplotTFR(cfgtopo, stat);
end
if isequal(cfg.saveaspng, 'no')
% nothing to do
else
% save figure
filename = strcat(cfg.saveaspng, '_fig', num2str(iPl));
print(gcf, '-dpng', filename);
end
end
end
ft_progress('close');
% return to previous warning settings
ft_warning(ws);
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous stat
ft_postamble provenance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sign = prob2hlsign(prob, hlsign)
if prob < 0.01
sign = hlsign(1);
elseif prob < 0.05
sign = hlsign(2);
elseif prob < 0.1
sign = hlsign(3);
elseif prob < 0.2
sign = hlsign(4);
elseif prob < 0.3
sign = hlsign(5);
end