-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStoDLPZetaSparse.m
97 lines (85 loc) · 3.99 KB
/
StoDLPZetaSparse.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
function [P,T] = StoDLPZetaSparse(s,mu,ord)
% STODLPZETASPARSE self-interaction matrix for the 2D Stokes double-layer
% pressure and traction potentials. (Velocity potential is non-singular.)
% Quadrature correction uses zeta correction and combines with central
% difference formulae.
%
% Inputs
% s: source struct, output of setupquad.m
% mu: viscosity
% ord: desired ord of zeta correction. Use finite-part zeta correction
% with central difference formula of order = ord-1.
% Outputs
% P: pressure potential matrix
% T: traction potential matrix
% BW Jun,2021
N = numel(s.x);
k = ceil((ord-1)/2);
if k > 0 % hypersinuglar & constant term corrections
ind1 = (1:N)'.*ones(1,2*k+1); % stencil i-indices
ind2 = mod((0:N-1)'+(-k:k),N)+1; % stencil j-indices
%ind = sub2ind([N,N],ind1,ind2); % stencil linear indices
cd = CDF2(k); % 2nd deriv central difference coeffs
% pressure: hypersingular & singular correction
ny = s.nx(ind2);
d = s.x - s.x(ind2); % displacement
r2 = real(d.*conj(d));
dnyirr = real(d.*conj(ny))./r2; % (x-y).ny/r^2
dnyirr(:,k+1)=-s.cur/2; % diagonal limits, will be zero out in DLP pressure, but useful in DLP traction
rpt = s.w.*(-k:k);
D = (r2 - rpt.^2)./rpt.^2; D(:,k+1)=0;
Er2cd = (mu/pi/2) * cd([end:-1:2,1:end]) .* (1-D+D.^2).*s.w(ind2)./s.w.^2; % prefactor, CDF weights, and expansion of s.w/r^2
PW = Er2cd.*(2*dnyirr.*d-ny);
PW(:,k+1) = PW(:,k+1) + mu*pi/3*s.nx./s.w; % add hypersingular part
P = sparse([ind1,ind1],[ind2,ind2+N],[real(PW),imag(PW)],N,2*N); % block 1x2 kernel
% traction: hypersingular & constant term corrections
if nargout > 1
nx1 = real(s.nx); nx2 = imag(s.nx); % normal & tangent vectors on the curve
ny1 = real(ny); ny2 = imag(ny);
t1 = -nx2; t2 = nx1;
d1 = real(d); d2 = imag(d);
% compute constants from singular terms via central difference
dnxirr = real(d.*conj(s.nx))./r2; % (x-y).nx/r^2
dnxirr(:,k+1)=s.cur/2; % diagonal limits
% numerator of singular terms (as tensors)
TW = cell(2,2);
TW{1,1} = dnxirr.*ny1.*d1 + dnyirr.*d1.*nx1;
TW{1,2} = dnxirr.*ny1.*d2 + dnyirr.*d1.*nx2;
TW{2,1} = dnxirr.*ny2.*d1 + dnyirr.*d2.*nx1;
TW{2,2} = dnxirr.*ny2.*d2 + dnyirr.*d2.*nx2;
% numerator of hypersingular terms
nxny = nx1.*ny1+nx2.*ny2; % nx.ny
Tt11 = d1.^2 ./r2; Tt11(:,k+1) = t1.^2; % (d x d)/r^2
Tt12 = d1.*d2./r2; Tt12(:,k+1) = t1.*t2;
Tt22 = d2.^2 ./r2; Tt22(:,k+1) = t2.^2;
TW{1,1} = TW{1,1} + nxny.*Tt11 + nx1.*ny1;
TW{1,2} = TW{1,2} + nxny.*Tt12 + nx1.*ny2;
TW{2,1} = TW{2,1} + nxny.*Tt12 + nx2.*ny1;
TW{2,2} = TW{2,2} + nxny.*Tt22 + nx2.*ny2;
% multiply by prefactors and CDF weights
TW{1,1} = Er2cd.*TW{1,1};
TW{1,2} = Er2cd.*TW{1,2};
TW{2,1} = Er2cd.*TW{2,1};
TW{2,2} = Er2cd.*TW{2,2};
% correct hypersingular terms
c2 = -mu*pi/3 ./s.w;
TW{1,1}(:,k+1) = TW{1,1}(:,k+1) + c2;
TW{2,2}(:,k+1) = TW{2,2}(:,k+1) + c2;
% compute constants from regular terms
c0 = -s.cur.^2 .*s.w * (mu/pi/4); % diagonal limit (-s.cur^2/4)*s.w*(mu/pi)
TW{1,1}(:,k+1) = TW{1,1}(:,k+1) + c0.*(1-8*Tt11(:,k+1));
TW{1,2}(:,k+1) = TW{1,2}(:,k+1) - 8*c0.*Tt12(:,k+1);
TW{2,1}(:,k+1) = TW{2,1}(:,k+1) - 8*c0.*Tt12(:,k+1);
TW{2,2}(:,k+1) = TW{2,2}(:,k+1) + c0.*(1-8*Tt22(:,k+1));
% form sparse matrix
T = [sparse(ind1,ind2,TW{1,1},N,N), sparse(ind1,ind2,TW{1,2},N,N);
sparse(ind1,ind2,TW{2,1},N,N), sparse(ind1,ind2,TW{2,2},N,N)];
end
elseif k > -1 % only hypersinuglar term correction when ord < 1
PW = spdiags(mu*pi/3*s.nx./s.w,0,N,N);
P = [real(PW),imag(PW)];
TW = spdiags(-mu*pi/3 ./s.w,0,N,N);
T = kron(eye(2),TW);
else
P = 0; T = 0;
end