-
Notifications
You must be signed in to change notification settings - Fork 0
/
rundissect_pytorch.sh
executable file
·230 lines (192 loc) · 5.59 KB
/
rundissect_pytorch.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# pre-defined setting
#WORKDIR=probes
WORKDIR="/scratch/shared/nfs1/ruthfong"
#DIR=pytorch_alexnet_imagenet
#DIR="pytorch_vgg19_imagenet"
DIR="pytorch_alexnet_imagenet"
ARCH='alexnet' # [alexnet,squeezenet1_1,resnet18,...]. It should work for all the models in https://github.com/pytorch/vision/tree/master/torchvision/models
#LAYERS="features"
#LAYERS="features.1 features.4 features.7 features.9 features.11"
LAYERS="classifier.2 classifier.5 classifier.6"
#ARCH="vgg19"
#LAYERS="features.3 features.8 features.17 features.26 features.35"
NUMCLASSES=1000
DATASET=dataset/broden1_227
#DATASET=dataset/broden1_224
INPUTSIZE=227
#INPUTSIZE=224
GPU="0 1"
WEIGHTS="None"
# default setting
THRESHOLD="0.04"
TALLYDEPTH=2048
#PARALLEL=4
PARALLEL=0
TALLYBATCH=16
PROBEBATCH=64
QUANTILE="0.005"
COLORDEPTH="3"
CENTERED="c"
MEAN="0 0 0"
FORCE="none"
ENDAFTER="none"
RESOLUTION="120"
# Set up directory to work in, and lay down pid file etc.
mkdir -p $WORKDIR/$DIR
if [ -z "${FORCE##*pid*}" ] || [ ! -e $WORKDIR/$DIR/job.pid ]
then
exec &> >(tee -a "$WORKDIR/$DIR/job.log")
#tee -a "$WORKDIR/$DIR/job.log"
echo "Beginning pid $$ on host $(hostname) at $(date)"
trap "rm -rf $WORKDIR/$DIR/job.pid $WORKDIR/$DIR/job.host" EXIT
echo $$ > $WORKDIR/$DIR/job.pid
echo $(hostname) > $WORKDIR/$DIR/job.host
else
echo "Already running $DIR under pid $(cat $WORKDIR/$DIR/job.pid)"
exit 1
fi
if [ "$COLORDEPTH" -le 0 ]
then
(( COLORDEPTH = -COLORDEPTH ))
CENTERED=""
fi
if [ -z "${CENTERED##*c*}" ]
then
MEAN="109.5388 118.6897 124.6901"
fi
# Get rid of slashes in layer names for directory purposes
LAYERA=(${LAYERS//\//-})
# Step 1: do a forward pass over the network specified by the model files.
# The output is e.g.,: "conv5.mmap", "conv5-info.txt"
if [ -z "${FORCE##*probe*}" ] || \
! ls $(printf " $WORKDIR/$DIR/%s.mmap" "${LAYERA[@]}") 2>/dev/null
then
echo 'Testing activations'
python src/netprobe_pytorch.py \
--directory $WORKDIR/$DIR \
--blobs $LAYERS \
--mean $MEAN \
--definition $ARCH \
--num_classes $NUMCLASSES \
--dataset $DATASET \
--input_size $INPUTSIZE \
--gpu $GPU
# --weights $WEIGHTS
[[ $? -ne 0 ]] && exit $?
echo netprobe > $WORKDIR/$DIR/job.done
fi
if [ -z "${ENDAFTER##*probe*}" ]
then
exit 0
fi
# Step 2: compute quantiles
# saves results in conv5-quant-1000.mmap; conv5-rank-1001.mmap inverts this too.
#echo 'Computing quantiles'
if [ -z "${FORCE##*sort*}" ] || \
! ls $(printf " $WORKDIR/$DIR/%s-quant-*.mmap" "${LAYERA[@]}") 2>/dev/null
then
echo 'Collecting quantiles of activations'
python src/quantprobe.py \
--directory $WORKDIR/$DIR \
--blobs $LAYERS
[[ $? -ne 0 ]] && exit $?
echo quantprobe > $WORKDIR/$DIR/job.done
fi
if [ -z "${ENDAFTER##*quant*}" ]
then
exit 0
fi
# Step 3: the output here is the ~1G file called "conv5-tally-005.mmap".
# It contains all the I/O/U etc counts for every label and unit (at the 0.5%
# top activtation mask) for EVERY image. I.e., for image #n, we can read
# out the number of pixels that light up both unit #u and label #l for
# any combination of (n, u, l). That is a a very large sparse matrix, so
# we encode that matrix specially. This is a
# (#images, 2048, 3) dimensional file with entries such as this:
# E.g., for image 412, we will have a list of up to 2048 triples.
# Each triple has (count, #unit, #label) in it.
if [ -z "${FORCE##*tally*}" ] || \
! ls $(printf " $WORKDIR/$DIR/%s-tally-*.mmap" "${LAYERA[@]}") 2>/dev/null
then
echo 'Tallying counts'
python src/labelprobe.py \
--directory $WORKDIR/$DIR \
--quantile $QUANTILE \
--tally_depth $TALLYDEPTH \
--blobs $LAYERS \
--parallel $PARALLEL \
--batch_size $TALLYBATCH \
--ahead 4
[[ $? -ne 0 ]] && exit $?
echo tallyprobe > $WORKDIR/$DIR/job.done
fi
if [ -z "${ENDAFTER##*tally*}" ]
then
exit 0
fi
# Step 4: compute conv5-imgmax.mmap / conv5-imgmax.mat
# This contains the per-imgae maximum activation for every unit.
if [ -z "${FORCE##*imgmax*}" ] || \
! ls $(printf " $WORKDIR/$DIR/%s-imgmax.mmap" "${LAYERA[@]}") 2>/dev/null
then
echo 'Computing imgmax'
python src/maxprobe.py \
--directory $WORKDIR/$DIR \
--blobs $LAYERS
[[ $? -ne 0 ]] && exit $?
echo maxprobe > $WORKDIR/$DIR/job.done
fi
if [ -z "${ENDAFTER##*imgmax*}" ]
then
exit 0
fi
# Step 5: we just run over the tally file to extract whatever score we
# want to derive. That's pretty easy, so we also generate HTML at the
# same time.
if [ -z "${FORCE##*view*}" ] || \
! ls $(printf " $WORKDIR/$DIR/html/%s.html" "${LAYERA[@]}") || \
! ls $(printf " $WORKDIR/$DIR/%s-result.csv" "${LAYERA[@]}")
then
echo 'Generating views'
echo $LAYERS
python src/viewprobe.py \
--directory $WORKDIR/$DIR \
--format csv,html,quantmat \
--imscale 72 \
--imsize $RESOLUTION \
--blobs $LAYERS
[[ $? -ne 0 ]] && exit $?
echo viewprobe > $WORKDIR/$DIR/job.done
fi
if [ -z "${ENDAFTER##*view*}" ]
then
exit 0
fi
#
# Step 6: graph the results.
if [ -z "${FORCE##*graph*}" ] || ! globexists $WORKDIR/$DIR/html/*-graph.png
then
# Compute text for labeling graphs.
PERCENT=$(printf '%g%%' $(echo "scale=0; $THRESHOLD * 100" | bc))
echo 'Generating graph'
python src/graphprobe.py \
--directories $WORKDIR/$DIR \
--blobs $LAYERS \
--labels $LAYERS \
--threshold $THRESHOLD \
--include_total true \
--title "Interpretability By Layer ($PERCENT IOU)" \
--out $WORKDIR/$DIR/html/layer-graph.png
[[ $? -ne 0 ]] && exit $?
echo graphprobe > $WORKDIR/$DIR/job.done
fi
if [ "$WORKDIR" != "$WORKDIR" ]
then
rm -rf $WORKDIR/$DIR/
[[ $? -ne 0 ]] && exit $?
fi
echo finished > $WORKDIR/$DIR/job.done
if [ -z "${ENDAFTER##*graph*}" ]
then
exit 0
fi